×

Nonlinear dynamic responses of rotating pretwisted cylindrical shells. (English) Zbl 1439.74182

Summary: A rotating pretwisted cylindrical shell model with a presetting angle is established to investigate nonlinear dynamic responses of the aero-engine compressor blade. The centrifugal force and the Coriolis force are considered in the model. The aerodynamic pressure is obtained by the first-order piston theory. The strain-displacement relationship is derived by the Green strain tensor. Based on the first-order shear deformation theory and the isotropic constitutive law, nonlinear partial differential governing equations are derived by using the Hamilton principle. Discarding the Coriolis force effect, Galerkin approach is utilized to reduce nonlinear partial differential governing equations into a two-degree-of-freedom nonlinear system. According to nonlinear ordinary differential equations, numerical simulations are performed to explore nonlinear transient dynamic responses of the system under the effect of the single point excitation and nonlinear steady-state dynamic responses of the system under the effect of the uniform distribution excitation. The effects of the excitation parameter, damping coefficient, rotating speed, presetting angle and pretwist angle on nonlinear dynamic responses of the system are fully discussed.

MSC:

74K25 Shells
76G25 General aerodynamics and subsonic flows
Full Text: DOI

References:

[1] Carnegie, W.: Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. J. Mech. Eng. Sci. 1(3), 235-240 (1959) · Zbl 0093.40101 · doi:10.1243/JMES_JOUR_1959_001_028_02
[2] Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending-bending vibrations of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method. Int. J. Mech. Sci. 23(9), 517-530 (1981) · Zbl 0472.73059 · doi:10.1016/0020-7403(81)90058-8
[3] Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending-torsion vibrations of rotating blades of asymmetric aerofoil cross section with allowance for shear deflection and rotary inertia by use of the Reissner method. J. Sound Vib. 75(1), 17-36 (1981) · Zbl 0449.73067 · doi:10.1016/0022-460X(81)90233-9
[4] Chen, L.W., Chen, C.L.: Vibration and stability of cracked thick rotating blades. Comput. Struct. 28(1), 67-74 (1988) · doi:10.1016/0045-7949(88)90093-4
[5] Song, O., Librescu, L.: Structural modeling and free vibration analysis of rotating composite thin-walled beams. J. Am. Helicopter Soc. 42(4), 358-369 (1997) · doi:10.4050/JAHS.42.358
[6] Chandiramani, N.K., Librescu, L., Shete, C.D.: On the free-vibration of rotating composite beams using a higher-order shear formulation. Aerosp. Sci. Technol. 6(8), 545-561 (2002) · Zbl 1018.74505 · doi:10.1016/S1270-9638(02)01195-1
[7] Oh, S.Y., Song, O., Librescu, L.: Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. Int. J. Solids Struct. 40(5), 1203-1224 (2003) · Zbl 1044.74018 · doi:10.1016/S0020-7683(02)00605-4
[8] Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306(1-2), 333-348 (2007) · doi:10.1016/j.jsv.2007.05.011
[9] Saravia, C.M., Machado, S.P., Cortínez, V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A/Solids 30(3), 432-441 (2011) · Zbl 1278.74080 · doi:10.1016/j.euromechsol.2010.12.015
[10] Oh, Y., Yoo, H.H.: Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. Int. J. Mech. Sci. 119, 68-79 (2016) · doi:10.1016/j.ijmecsci.2016.10.002
[11] Ding, H., Chen, L.Q.: Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 63(1-2), 125-134 (2011) · Zbl 1215.74032 · doi:10.1007/s11071-010-9790-7
[12] Ding, H., Zhu, M.H., Zhang, Z., Zhang, Y.W., Chen, L.Q.: Free vibration of a rotating ring on an elastic foundation. Int. J. Appl. Mech. 9(4), 1750051 (2017) · doi:10.1142/S175882511750051X
[13] Wang, F.X., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331(26), 5755-5773 (2012) · doi:10.1016/j.jsv.2012.05.024
[14] Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68(4), 487-504 (2012) · Zbl 1348.74160 · doi:10.1007/s11071-011-0231-z
[15] Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225(12), 3483-3510 (2014) · Zbl 1326.74049 · doi:10.1007/s00707-014-1151-z
[16] Sreenivasamurthy, S., Ramamurti, V.: A parametric study of vibration of rotating pre-twisted and tapered low aspect ratio cantilever plates. J. Sound Vib. 76(3), 311-328 (1981) · doi:10.1016/0022-460X(81)90515-0
[17] Ramamurti, V., Kielb, R.: Natural frequencies of twisted rotating plates. J. Sound Vib. 97(3), 429-449 (1984) · doi:10.1016/0022-460X(84)90271-2
[18] Qatu, M.S., Leissa, A.W.: Vibration studies for laminated composite twisted cantilever plates. Int. J. Mech. Sci. 33(11), 927-940 (1991) · doi:10.1016/0020-7403(91)90012-R
[19] Yoo, H.H., Kwak, J.Y., Chung, J.: Vibration analysis of rotating pre-twisted blades with a concentrated mass. J. Sound Vib. 240(5), 891-908 (2001) · doi:10.1006/jsvi.2000.3258
[20] Yoo, H.H., Kim, S.K.: Free vibration analysis of rotating cantilever plates. AIAA J. 40(11), 2188-2196 (2002) · doi:10.2514/2.1572
[21] Yoo, H.H., Kim, S.K., Inman, D.J.: Modal analysis of rotating composite cantilever plates. J. Sound Vib. 258(2), 233-246 (2002) · doi:10.1006/jsvi.2002.5106
[22] Hashemi, S.H., Farhadi, S., Carra, S.: Free vibration analysis of rotating thick plates. J. Sound Vib. 323, 366-384 (2009) · doi:10.1016/j.jsv.2008.12.007
[23] Farhadi, S., Hashemi, S.H.: Aeroelastic behavior of cantilevered rotating rectangular plates. Int. J. Mech. Sci. 53(4), 316-328 (2011) · doi:10.1016/j.ijmecsci.2011.01.013
[24] Sinha, S.K., Turner, K.E.: Natural frequencies of a pre-twisted blade in a centrifugal force field. J. Sound Vib. 330, 2655-2681 (2011) · doi:10.1016/j.jsv.2010.12.017
[25] Sun, J., Kari, L., Arteaga, I.L.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J. Sound Vib. 332, 1355-1371 (2013) · doi:10.1016/j.jsv.2012.10.030
[26] Rostami, H., Ranji, A.R., Nejad, F.B.: Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 115-116, 438-456 (2016) · doi:10.1016/j.ijmecsci.2016.07.030
[27] Rao, J.S., Gupta, K.: Free vibrations of rotating small aspect ratio pretwisted blades. Mech. Mach. Theory 22(2), 159-167 (1987) · doi:10.1016/0094-114X(87)90040-1
[28] Tsuiji, T., Sueoka, T.: Vibration analysis of twisted thin cylindrical panels by using the Rayleigh-Ritz method. Jpn. Soc. Mech. Eng. Int. J. 33(3), 501-505 (1990)
[29] Hu, X.X., Tsuiji, T.: Free vibration analysis of curved and twisted cylindrical thin panels. J. Sound Vib. 219(1), 63-88 (1999) · doi:10.1006/jsvi.1998.1825
[30] Hu, X.X., Tsuiji, T.: Free vibration analysis of rotating twisted cylindrical thin panels. J. Sound Vib. 222(2), 209-224 (1999) · doi:10.1006/jsvi.1998.2118
[31] Hu, X.X., Tsuiji, T.: Vibration analysis of laminated cylindrical thin panels with twist and curvature. Int. J. Solids Struct. 38, 2713-2736 (2001) · Zbl 1049.74603 · doi:10.1016/S0020-7683(00)00178-5
[32] Hu, X.X., Lim, C.W., Sakiyama, T., Li, Z.R., Wang, W.K.: Free vibration of elastic helicoidal shells. Int. J. Mech. Sci. 47(6), 941-960 (2005) · Zbl 1192.74179 · doi:10.1016/j.ijmecsci.2005.01.001
[33] Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804-5820 (2013) · doi:10.1016/j.jsv.2013.06.025
[34] Ganapathi, M., Varadan, T.K.: Large amplitude vibrations of circular cylindrical shells. J. Sound Vib. 192, 1-14 (1996) · doi:10.1006/jsvi.1996.0172
[35] Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233-257 (2014) · doi:10.1016/j.ijnonlinmec.2013.09.012
[36] Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264, 1091-1125 (2003) · doi:10.1016/S0022-460X(02)01385-8
[37] Amabili, M.: Nonlinear vibrations of circular cylindrical panels. J. Sound Vib. 281(3-5), 509-535 (2005) · doi:10.1016/j.jsv.2004.01.021
[38] Alijani, F., Amabili, M.: Nonlinear vibrations of thick laminated circular cylindrical panels. Compos. Struct. 96, 643-660 (2013) · doi:10.1016/j.compstruct.2012.09.016
[39] Alijani, F., Amabili, M., Balasubramanian, P., Carra, S., Ferrari, G., Garziera, R.: Damping for large-amplitude vibrations of plates and curved panels, Part 1: modeling and experiments. Int. J. Non-Linear Mech. 85, 23-40 (2016) · doi:10.1016/j.ijnonlinmec.2016.05.003
[40] Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparisons. Int. J. Non-Linear Mech. 85, 226-240 (2016) · doi:10.1016/j.ijnonlinmec.2016.05.004
[41] Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63-77 (2013) · doi:10.1016/j.tws.2013.01.009
[42] Hao, Y.X., Niu, Y., Zhang, W., Li, S.B., Yao, M.H., Wang, A.W.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53(1-2), 95-109 (2018) · doi:10.1007/s11012-017-0715-0
[43] Washizu, K.: Variational Method in Elasticity and Plasticity, 2nd edn. Pergamon, Oxford (1975) · Zbl 0339.73035
[44] Yao, M. H., Ma, L., Zhang, M. M., Zhang, W.: Vibration characteristics analysis of the rotating blade based on an polynomial aerodynamic force. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, Cleveland, USA, August 6-9 (2017)
[45] Bastürk, S., Uyanik, H., Kazanci, Z.: An analytical model for predicting the deflection of laminated basalt composite plates under dynamic loads. Compos. Struct. 116, 273-285 (2014) · doi:10.1016/j.compstruct.2014.05.018
[46] Young, D.: Vibration of rectangular plates by the Ritz method. J. Appl. Mech. 17, 448-453 (1950) · Zbl 0039.20701
[47] Zheng, Z.C.: Mechanical Vibration, pp. 416-418. China Machine Press, Beijing (1980)
[48] Shen, H.S., Wang, H.: Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Compos. Part B Eng. 60, 167-177 (2014) · doi:10.1016/j.compositesb.2013.12.051
[49] Kobayashi, Y., Leissa, A.W.: Large amplitude free vibration of thick shallow shells supported by shear diaphragms. Int. J. Non-Linear Mech. 30, 57-66 (1995) · Zbl 0819.73036 · doi:10.1016/0020-7462(94)00030-E
[50] Chern, Y.C., Chao, C.C.: Comparison of natural frequencies of laminates by 3-D theory, part II: curved panels. J. Sound Vib. 230(5), 1009-1030 (2000) · doi:10.1006/jsvi.1999.2454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.