×

Analysis on nonlinear oscillations and resonant responses of a compressor blade. (English) Zbl 1326.74049

Summary: This paper focuses on the nonlinear oscillations and the steady-state responses of a thin-walled compressor blade of gas turbine engines with varying rotating speed under high-temperature supersonic gas flow. The rotating compressor blade is modeled as a pre-twisted, presetting, thin-walled rotating cantilever beam. The model involves the geometric nonlinearity, the centrifugal force, the aerodynamic load and the perturbed angular speed due to periodically varying air velocity. Using Hamilton’s principle, the nonlinear partial differential governing equation of motion is derived for the pre-twisted, presetting, thin-walled rotating beam. The Galerkin’s approach is utilized to discretize the partial differential governing equation of motion to a two-degree-of-freedom nonlinear system. The method of multiple scales is applied to obtain the four-dimensional nonlinear averaged equation for the resonant case of 2:1 internal resonance and primary resonance. Numerical simulations are presented to investigate nonlinear oscillations and the steady-state responses of the rotating blade under combined parametric and forcing excitations. The results of numerical simulation, which include the phase portrait, waveform and power spectrum, illustrate that there exist both periodic and chaotic motions of the rotating blade. In addition, the frequency response curves are also presented. Based on these curves, we give a detailed discussion on the contributions of some factors, including the nonlinearity, damping and rotating speed, to the steady-state nonlinear responses of the rotating blade.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
70E17 Motion of a rigid body with a fixed point
Full Text: DOI

References:

[1] Yang S.M., Tsao S.M.: Dynamics of a pretwisted blade under nonconstant rotating speed. Comput. Struct. 62, 643-651 (1997) · Zbl 0899.73243 · doi:10.1016/S0045-7949(96)00227-1
[2] Surace G., Anghel V., Mares C.: Coupled bending-bending-torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples. J. Sound Vib. 206, 473-486 (1997) · doi:10.1006/jsvi.1997.1092
[3] Chen C.L., Chen L.W.: Random response of a rotating composite blade with flexure-torsion coupling effect by the finite element method. Compos. Struct. 54, 407-415 (2001) · doi:10.1016/S0263-8223(01)00077-0
[4] Pesheck E., Pierre C., Shaw S.W.: Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Model. 33, 1085-1097 (2001) · Zbl 1197.74053 · doi:10.1016/S0895-7177(00)00301-0
[5] Sakar G., Sabuncu M.: Dynamic stability of a rotating asymmetric cross-section blade subjected to an axial periodic force. Int. J. Mech. Sci. 45, 1467-1482 (2003) · Zbl 1045.74546 · doi:10.1016/j.ijmecsci.2003.10.006
[6] Chandiramani N.K., Shete C.D., Librescu L.: Vibration of higher-order-shearable pretwisted rotating composite blades. Int. J. Mech. Sci. 45, 2017-2041 (2003) · Zbl 1112.74388 · doi:10.1016/j.ijmecsci.2004.02.001
[7] Lim C.W.: A spiral model for bending of nonlinearly pretwisted helicoidal structures with lateral loading. Int. J. Solids Struct. 40, 4257-4279 (2003) · Zbl 1054.74671 · doi:10.1016/S0020-7683(03)00198-7
[8] Bedoor B.O., Qaisia A.A.: Stability analysis of rotating blade bending vibration due to torsional excitation. J. Sound Vib. 282, 1065-1083 (2005) · doi:10.1016/j.jsv.2004.03.038
[9] Turhan O., Bulut G.: Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed. J. Sound Vib. 280, 945-964 (2005) · doi:10.1016/j.jsv.2003.12.053
[10] Sabuncu M., Evran K.: The dynamic stability of a rotating pre-twisted asymmetric cross-section blade subjected to lateral parametric excitation. Finite Elem. Anal. Des. 42, 1113-1122 (2006) · Zbl 1192.74199 · doi:10.1016/j.finel.2006.04.004
[11] Park J.H., Park H.Y., Jeong S.Y., Lee S., Shin Y.H., Park J.P.: Linear vibration analysis of rotating wind-turbine blade. Curr. Appl. Phys. 10, 332-334 (2010) · doi:10.1016/j.cap.2009.11.036
[12] Tang D.M., Dowell E.H.: Nonlinear response of a non-rotating rotor blade to a periodic gust. J. Fluids Struct. 10, 721-742 (1996) · doi:10.1006/jfls.1996.0050
[13] Bedoor B.O.: Dynamic model of coupled shaft torsional and blade bending deformations in rotors. Comput. Methods Appl. Mech. Eng. 169, 177-190 (1999) · Zbl 0963.74025 · doi:10.1016/S0045-7825(98)00184-4
[14] Choi S.T., Chou Y.T.: Vibration analysis of elastically supported turbomachinery blades by the modified differential quadrature method. J. Sound Vib. 240, 937-953 (2001) · doi:10.1006/jsvi.2000.3267
[15] Nassar Y.N., Bedoor B.O.: On the vibration of a rotating blade on a torsionally flexible shaft. J. Sound Vib. 259, 1237-1242 (2003) · doi:10.1006/jsvi.2002.5287
[16] Poirel D., Price S.J.: Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow. Nonlinear Dyn. 48, 423-435 (2007) · Zbl 1181.76076 · doi:10.1007/s11071-006-9096-y
[17] Wang Y.F., Wang H.W., Gao Z.: Dynamic modeling of helicopter rotor blades. Tsinghua Sci. Technol. 14, 84-88 (2009) · doi:10.1016/S1007-0214(10)70037-7
[18] Ghorashi M.: Nonlinear analysis of the dynamics of articulated composite rotor blades. Nonlinear Dyn. 67, 227-249 (2012) · doi:10.1007/s11071-011-9974-9
[19] Lacarbonara, W., Arvin, H., Nejad, F.B.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part 1: linear modal properties, Nonlinear Dynamics. doi:10.1007/s11071-012-0486-z (2012)
[20] Arvin H., Lacarbonara W., Nejad F.B.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part II: flapping nonlinear normal modes. Nonlinear Dyn. 70, 2279-2301 (2012) · doi:10.1007/s11071-012-0619-4
[21] Banerjee J.R.: Free vibration analysis of twisted beam using the dynamic stiffness method. Int. J Solids Struct. 38, 6703-6722 (2001) · Zbl 0999.74057 · doi:10.1016/S0020-7683(01)00119-6
[22] Librescu L., Oh S.Y., Song O.: Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability. Eur. J. Mech. A/Solids 23, 499-515 (2004) · Zbl 1060.74564 · doi:10.1016/j.euromechsol.2003.12.003
[23] Ozdemir O., Kaya M.O.: Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J. Sound Vib. 289, 413-420 (2006) · Zbl 1163.74512 · doi:10.1016/j.jsv.2005.01.055
[24] Fazelzadeh S.A., Hosseini M.: Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials. J. Fluids Struct. 23, 1251-1264 (2007) · doi:10.1016/j.jfluidstructs.2007.06.006
[25] Shadmehri F., Haddadpour H., Kouchakzadeh M.A.: Flexural-torsional behavior of thin-walled composite beams with closed cross-section. Thin-Walled Struct. 45, 699-705 (2007) · doi:10.1016/j.tws.2007.05.006
[26] Kaya M.O., Ozgumus O.O.: Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. J. Sound Vib. 306, 495-506 (2007) · doi:10.1016/j.jsv.2007.05.049
[27] Vo T.P., Lee J., Ahn N.: On sixfold coupled vibrations of thin-walled composite box beams. Compos. Struct. 89, 524-535 (2009) · doi:10.1016/j.compstruct.2008.11.004
[28] Valverde J., Vallejo D.G.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355-372 (2009) · Zbl 1170.74345 · doi:10.1007/s11071-008-9369-8
[29] Lee U., Jang I.: Spectral element model for axially loaded bending-shear-torsion coupled composite Timoshenko beams. Compos. Struct. 92, 2860-2870 (2010) · doi:10.1016/j.compstruct.2010.04.012
[30] Yao M.H., Chen Y.P., Zhang W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487-504 (2012) · Zbl 1348.74160 · doi:10.1007/s11071-011-0231-z
[31] Shahgholi M., Khadem S.E.: Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn. 70, 1311-1325 (2012) · doi:10.1007/s11071-012-0535-7
[32] Sapountzakis E.J., Dikaros I.C.: Nonlinear flexural-torsional dynamic analysis of beams of variable doubly symmetric cross section-application to wind turbine towers. Nonlinear Dyn. 73, 199-227 (2013) · Zbl 1281.74019 · doi:10.1007/s11071-013-0779-x
[33] Mccarthy T.R., Chattopadhyay A.: A refined higher-order composite box beam theory. Compos. Part B 28B, 523-534 (1997) · doi:10.1016/S1359-8368(96)00053-4
[34] Kim S.S., Kim J.H.: Rotating composite beam with a breathing crack. Compos. Struct. 60, 83-90 (2003) · doi:10.1016/S0263-8223(02)00291-X
[35] Thakkar D., Ganguli R.: Dynamic response of rotating beams with piezoceramic actuation. J. Sound Vib. 270, 729-753 (2004) · doi:10.1016/S0022-460X(03)00189-5
[36] Choi S.C., Park J.S., Kim J.H.: Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Compos. Struct. 76, 362-374 (2006) · doi:10.1016/j.compstruct.2005.05.010
[37] Wang J.H., Qin D.T., Lim T.C.: Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory. J. Sound Vib. 329, 3565-3586 (2010) · doi:10.1016/j.jsv.2010.03.011
[38] Saravia C.M., Machado S.P., Cortínez V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A/Solids 30, 432-441 (2011) · Zbl 1278.74080 · doi:10.1016/j.euromechsol.2010.12.015
[39] Piovan M.T., Machado S.P.: Thermoelastic dynamic stability of thin-walled beams with graded material properties. Thin-Walled Struct. 49, 437-447 (2011) · doi:10.1016/j.tws.2010.11.002
[40] Yao, M.H., Zhang, W.: Using the extended Melnikov method to study multi-pulse chaotic motions of a rectangular thin plate. Int. J. Dyn. Control (2013). doi:10.1007/s40435-013-0031-z
[41] Librescu L., Song O.: Thin-Walled Composite Beams. Springer, Netherlands (2006) · Zbl 1107.74002
[42] Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979) · Zbl 0418.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.