×

Cohomology of generalized configuration spaces. (English) Zbl 1439.55016

As the title indicates, this paper is concerned with the computation of the cohomology (with compact support) of generalized configuration spaces with arbitrary coefficients. For a space \(X\) and a partition \(T\) of \(\{1,\dots,n\}\), the author defines \[X(T) = \{ (x_1, \dots, x_n) \in X^n \mid x_i = x_j \iff i \text{ and } j \text{ are in the same block of } T \}.\] For an upwards closed subset \(U\) of the set of all partitions of \(\{1,\dots,n\}\), the generalized configuration space is then \(F(X,U) = X^n \setminus \bigcup_{T \in U} X(T)\). This definition includes the case of the usual configuration space of ordered points \(F(X,n) = \{ (x_1, \dots, x_n) \mid \forall i \neq j, \, x_i \neq x_j \}\).
The cohomology \(H^\bullet_c(F(X,n))\) depends on more than just the ring \(H^\bullet_c(X)\). In this paper, the author shows that \(H^\bullet_c(F(X,n))\) can be computed, as a representation of the symmetric group and with arbitrary coefficients (ring, sheaf, complex of sheaves) from the data of the \(\mathbb{E}_\infty\)-algebra structure on \(C^\bullet_c(X)\), which induces the ring structure of \(H^\bullet_c(X)\). In fact, the author proves even that \(H^\bullet_c(F(X,n))\) can be recovered from just the twisted commutative dg-algebra (tcdga) structure of \(C^\bullet_c(X)\), and that if one forgets the symmetric group action, \(H^\bullet_c(F(X,n))\) can be recovered from just the commutative shuffle dg-algebra structure of \(C^\bullet_c(X)\).
The proof uses a construction similar in spirit to one of M. Bendersky and S. Gitler [Trans. Am. Math. Soc. 326, No. 1, 423–440 (1991; Zbl 0738.54007)], who had produced a procedure to build a cdga \(\Lambda(n, A)\) from \(A = C^\bullet(X, \mathbb{Q})\) to compute \(H^\bullet(F(X,n), \mathbb{Q})\). The author vastly generalizes this construction to deal with tcdgas (to deal with coefficients different from \(\mathbb{Q}\)) and generalized configuration spaces. Given a set \(U\) as above and a tcdga, the author produces two cochain complexes \(\mathcal{CF}(U,A)\) and \(\mathcal{CD}(U, A)\). For a space \(X\) satisfying technical conditions and a bounded below complex of sheaves \(\mathcal{F}\) on \(X\), the author considers the tcdga \(R\Gamma^\otimes(X,\mathcal{F})\) (resp. \(R\Gamma^\otimes_c(X,\mathcal{F})\)) of derived global sections (resp. with compact support) of \(\mathcal{F}^{\otimes(-)}\). Then the author’s first theorem is that \(\mathcal{CF}(U, A)\) computes the cohomology (resp. with compact support) of \(F(X,U)\) with coefficients in \(\mathcal{F}^{\boxtimes n}\), and \(\mathcal{CD}(U,A)\) does the same for its complement in \(X^n\) (“generalized fat diagonal”). This permits the construction of several spectral sequences converging to the desired cohomologies.
The second main theorem of the paper is a generalization of a theorem of A. Arabia [“Espaces de configuration généralisés. Espaces topologiques \(i\)-acycliques. Suites spectrales “basiques””, Preprint, arXiv:1609.00522] regarding \(i\)-acyclic spaces, i.e. spaces \(X\) such that \(H^k_c(X) \to H^k(X)\) is the zero map for all \(k\). Here, the author proves that for such a space \(X\), the cdga \(C^\bullet_c(X,\mathbb{Q})\) is formal (i.e. quasi-isomorphic to its cohomology) and the cup product of its cohomology vanishes. By combining it with the first main theorem, this in particular recovers Arabia’s result that \(H^\bullet_c(F(X,n), \mathbb{Q})\) only depends on the graded vector space \(H^\bullet_c(X, \mathbb{Q})\). Like the first theorem, this result is generalized to arbitrary coefficients – with the caveat that \(H^\bullet_c(X,R)\) must be projective – and to generalized configuration spaces.

MSC:

55R80 Discriminantal varieties and configuration spaces in algebraic topology
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
55N30 Sheaf cohomology in algebraic topology
55P48 Loop space machines and operads in algebraic topology

Citations:

Zbl 0738.54007

Software:

operads

References:

[1] Aouina, M. and Klein, J. R., On the homotopy invariance of configuration spaces, Algebr. Geom. Topol.4 (2004), 813-827. · Zbl 1052.55020
[2] Arabia, A., Espaces de configuration généralisés. Espaces topologiques i-acycliques. Suites spectrales ‘basiques’, Preprint (2016), . · Zbl 1485.55018
[3] Arone, G., A generalization of Snaith-type filtration, Trans. Amer. Math. Soc.351 (1999), 1123-1150. · Zbl 0945.55011
[4] Arone, G. and Ching, M., Operads and chain rules for the calculus of functors, Astérisque338 (2011). · Zbl 1239.55004
[5] Bacławski, K., Whitney numbers of geometric lattices, Adv. Math.16 (1975), 125-138. · Zbl 0326.05027
[6] Baranovsky, V. and Sazdanovic, R., Graph homology and graph configuration spaces, J. Homotopy Relat. Struct.7 (2012), 223-235. · Zbl 1273.55007
[7] Barratt, M. G., Twisted Lie algebras, in Geometric applications of homotopy theory (Proc. Conf., Evanston, IL, 1977), II, (Springer, Berlin, 1978), 9-15. · Zbl 0393.55021
[8] Bendersky, M. and Gitler, S., The cohomology of certain function spaces, Trans. Amer. Math. Soc.326 (1991), 423-440. · Zbl 0738.54007
[9] Berger, C. and Moerdijk, I., Axiomatic homotopy theory for operads, Comment. Math. Helv.78 (2003), 805-831. · Zbl 1041.18011
[10] Berglund, A., Homological perturbation theory for algebras over operads, Algebr. Geom. Topol.14 (2014), 2511-2548. · Zbl 1305.18030
[11] Bhatt, B. and Scholze, P., The pro-étale topology for schemes, Astérisque369 (2015), 99-201. · Zbl 1351.19001
[12] Björner, A. and Welker, V., The homology of ‘k-equal’ manifolds and related partition lattices, Adv. Math.110 (1995), 277-313. · Zbl 0845.57020
[13] Bremner, M. and Dotsenko, V., Algebraic operads: an algorithmic companion (CRC Press, Boca Raton, FL, 2016). · Zbl 1350.18001
[14] Campos, R., Idrissi, N., Lambrechts, P. and Willwacher, T., Configuration spaces of manifolds with boundary, Preprint (2018), .
[15] Chataur, D. and Cirici, J., Sheaves of E-infinity algebras and applications to algebraic varieties and singular spaces, Preprint (2018), . · Zbl 1396.55007
[16] Ching, M., Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol.9 (2005), 833-933. · Zbl 1153.55006
[17] Cohen, F. R. and Taylor, L. R., Computations of Gel’fand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, in Geometric applications of homotopy theory (Proc. Conf., Evanston, IL, 1977), I, (Springer, Berlin, 1978), 106-143. · Zbl 0398.55004
[18] Dotsenko, V. and Khoroshkin, A., Gröbner bases for operads, Duke Math. J.153 (2010), 363-396. · Zbl 1208.18007
[19] Fresse, B., On the homotopy of simplicial algebras over an operad, Trans. Amer. Math. Soc.352 (2000), 4113-4141. · Zbl 0958.18005
[20] Fresse, B., Koszul duality of operads and homology of partition posets, in Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, (American Mathematical Society, Providence, RI, 2004), 115-215. · Zbl 1077.18007
[21] Getzler, E., The homology groups of some two-step nilpotent Lie algebras associated to symplectic vector spaces, Preprint (1999), .
[22] Getzler, E., Resolving mixed Hodge modules on configuration spaces, Duke Math. J.96 (1999), 175-203. · Zbl 0986.14005
[23] Getzler, E. and Jones, J. D. S., Operads, homotopy algebra and iterated integrals for double loop spaces, Preprint (1994), .
[24] Goerss, P. and Schemmerhorn, K., Model categories and simplicial methods, in Interactions between homotopy theory and algebra, (Providence, RI, 2007), 3-49. · Zbl 1134.18007
[25] Goresky, M. and MacPherson, R., Stratified Morse theory, (Springer, Berlin, 1988). · Zbl 0639.14012
[26] Harper, J. E., Homotopy theory of modules over operads and non-𝛴 operads in monoidal model categories, J. Pure Appl. Algebra214 (2010), 1407-1434. · Zbl 1231.55011
[27] Hinich, V., Homological algebra of homotopy algebras, Comm. Algebra25 (1997), 3291-3323. · Zbl 0894.18008
[28] Hô, Q. P., Free factorization algebras and homology of configuration spaces in algebraic geometry, Selecta Math. (N.S.)23 (2017), 2437-2489. · Zbl 1422.55030
[29] Hô, Q. P., Densities and stability via factorization homology, Preprint (2018), .
[30] Hovey, M., Model categories, (American Mathematical Society, Providence, RI, 1999). · Zbl 0909.55001
[31] Iversen, B., Cohomology of sheaves, (Springer, Berlin, 1986). · Zbl 1272.55001
[32] Joyal, A., Foncteurs analytiques et espèces de structures, in Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que. 1985), (Springer, Berlin, 1986), 126-159. · Zbl 0612.18002
[33] Kadeishvili, T., Cohomology \(C_{\infty }\)-algebra and rational homotopy type, Preprint (2008),. · Zbl 1181.55012
[34] Kadeišvili, T. V., On the theory of homology of fiber spaces, Uspekhi. Mat. Nauk35 (1980), 183-188; International Topology Conference (Moscow State University, Moscow, 1979).
[35] Knudsen, B., Betti numbers and stability for configuration spaces via factorization homology, Algebr. Geom. Topol.17 (2017), 3137-3187. · Zbl 1377.57025
[36] Knudsen, B., Higher enveloping algebras, Geom. Topol.22 (2018), 4013-4066. · Zbl 1460.17018
[37] Kozlov, D. N., General lexicographic shellability and orbit arrangements, Ann. Comb.1 (1997), 67-90. · Zbl 0943.52004
[38] Kříž, I., On the rational homotopy type of configuration spaces, Ann. of Math. (2)139 (1994), 227-237. · Zbl 0829.55008
[39] Loday, J.-L. and Vallette, B., Algebraic operads, (Springer, Berlin, 2012). · Zbl 1260.18001
[40] Mandell, M. A., Cochain multiplications, Amer. J. Math.124 (2002), 547-566. · Zbl 1019.55002
[41] Mandell, M. A., Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci.103 (2006), 213-246. · Zbl 1105.55003
[42] Navarro Aznar, V., Sur la théorie de Hodge-Deligne, Invent. Math.90 (1987), 11-76. · Zbl 0639.14002
[43] Pavlov, D. and Scholbach, J., Symmetric operads in abstract symmetric spectra, J. Inst. Math. Jussieu18 (2018), 707-758. · Zbl 1503.55006
[44] Petersen, D., A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol.21 (2017), 2527-2555. · Zbl 1420.55027
[45] Petersen, D., A closer look at Kadeishvili’s theorem, Preprint (2019), . · Zbl 1457.18020
[46] Quillen, D., Rational homotopy theory, Ann. of Math. (2)90 (1969), 205-295. · Zbl 0191.53702
[47] Richter, B., On the homology and homotopy of commutative shuffle algebras, Israel J. Math.209 (2015), 651-682. · Zbl 1378.13009
[48] Richter, B. and Sagave, S., A strictly commutative model for the cochain algebra of a space, Preprint (2018) . · Zbl 1453.55011
[49] Richter, B. and Shipley, B., An algebraic model for commutative Hℤ-algebras, Algebr. Geom. Topol.17 (2017), 2013-2038. · Zbl 1381.55007
[50] Ronco, M., Shuffle bialgebras, Ann. Inst. Fourier (Grenoble)61 (2011), 799-850. · Zbl 1239.16032
[51] Saleh, B., Noncommutative formality implies commutative and Lie formality, Algebr. Geom. Topol.17 (2017), 2523-2542. · Zbl 1410.55006
[52] Sagave, S. and Schlichtkrull, C., Diagram spaces and symmetric spectra, Adv. Math.231 (2012), 2116-2193. · Zbl 1315.55007
[53] Sam, S. V. and Snowden, A., Stability patterns in representation theory, Forum Math. Sigma3 (2015), e11. · Zbl 1319.05146
[54] Stover, C. R., The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. Pure Appl. Algebra86 (1993), 289-326. · Zbl 0793.16016
[55] Sullivan, D., Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci.47 (1977), 269-331. · Zbl 0374.57002
[56] Sundaram, S. and Wachs, M., The homology representations of the k-equal partition lattice, Trans. Amer. Math. Soc.349 (1997), 935-954. · Zbl 0863.05082
[57] Sundaram, S. and Welker, V., Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Amer. Math. Soc.349 (1997), 1389-1420. · Zbl 0945.05067
[58] Tosteson, P., Lattice spectral sequences and cohomology of configuration spaces, Preprint (2016), .
[59] Totaro, B., Configuration spaces of algebraic varieties, Topology35 (1996), 1057-1067. · Zbl 0857.57025
[60] Weibel, C. A., An introduction to homological algebra, (Cambridge University Press, Cambridge, 1994). · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.