×

Free factorization algebras and homology of configuration spaces in algebraic geometry. (English) Zbl 1422.55030

Summary: We provide a construction of free factorization algebras in algebraic geometry and link factorization homology of a scheme with coefficients in a free factorization algebra to the homology of its (unordered) configuration spaces. As an application, this construction allows for a purely algebro-geometric proof of homological stability of configuration spaces.

MSC:

55R80 Discriminantal varieties and configuration spaces in algebraic topology
14A20 Generalizations (algebraic spaces, stacks)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
17B56 Cohomology of Lie (super)algebras
18G55 Nonabelian homotopical algebra (MSC2010)
81R99 Groups and algebras in quantum theory

References:

[1] Ayala, D., Francis, J.: Factorization homology of topological manifolds (2012). arXiv:1206.5522 · Zbl 1350.55009
[2] Ayala, D., Francis, J.: Poincaré/Koszul duality (2014). arXiv:1409.2478 · Zbl 1432.57060
[3] Beilinson, A., Drinfeld, V.: Chiral Algebras. American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, MR2058353 · Zbl 1138.17300
[4] Francis, J., Gaitsgory, D.: Chiral koszul duality (March 29, 2011). Selecta Math. (N.S.) 18(1), 27-87 (2012) · Zbl 1248.81198 · doi:10.1007/s00029-011-0065-z
[5] Farb, B., Wolfson, J.: Etale homological stability and arithmetic statistics (2015). arXiv:1512.00415 · Zbl 1397.14036
[6] Gaitsgory, D.: The Atiyah-Bott formula for the cohomology of the moduli space of bundles on a curve (2015). arXiv:1505.02331
[7] Getzler, E.: Resolving mixed Hodge modules on configuration spaces. Duke. Math. J. 96(1), 175-203 (1999). MR1663927 · Zbl 0986.14005 · doi:10.1215/S0012-7094-99-09605-9
[8] Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke. Math. J. 76(1), 203-272 (1994). MR1301191 · Zbl 0855.18006
[9] Gaitsgory, D., Lurie, J.: Weil’s conjecture for function fields (2014). http://www.math.harvard.edu/ lurie/. Accessed 10 Apr 2017 · Zbl 1439.14006
[10] Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. To appear as part of the Mathematical Surveys and Monographs series, vol. 221. http://www.math.harvard.edu/ gaitsgde/GL/. Accessed 10 Apr 2017 · Zbl 1409.14003
[11] Kriz, I., May J.P.: Operads, algebras, modules and motives. Société mathématique de France (1995) · Zbl 0840.18001
[12] Kupers, A., Miller, J.: \[E_n\] En-cell attachments and a local-to-global principle for homological stability (2014). arXiv:1405.7087 · Zbl 1384.55009
[13] Kupers, A., Miller, J.: Homological stability for topological chiral homology of completions. Adv. Math. 292, 755-827 (2016) · Zbl 1339.57039 · doi:10.1016/j.aim.2016.02.003
[14] Knudsen, B.: Betti numbers and stability for configuration spaces via factorization homology (2014). arXiv:1405.6696 · Zbl 1377.57025
[15] Lurie, J.: Higher algebra. http://www.math.harvard.edu/ lurie/. Accessed 10 Apr 2017
[16] Lurie, J.: Higher topos theory. Annals of mathematics studies, vol. 170, Princeton University Press, Princeton, NJ (2009) · Zbl 1175.18001
[17] Liu, Y., Zheng, W.: Enhanced adic formalism and perverse \[t\] t-structures for higher artin stacks (2014). arXiv:1211.5948v2 · Zbl 0857.57025
[18] Liu, Y., Zheng, W.: Enhanced six operations and base change theorem for artin stacks (2012). arXiv:1211.5948 · Zbl 0191.53702
[19] Manetti, M.: On some formality criteria for DG-lie algebras. J. Algebra. 438, 90-118 (2015) · Zbl 1394.17043 · doi:10.1016/j.jalgebra.2015.04.029
[20] Quillen, D.: Rational homotopy theory. Ann. Math. 90(2), 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[21] Raskin, S.: Chiral categories (2015). http://math.mit.edu/ sraskin/. Accessed 10 Apr 2017 · Zbl 1248.81198
[22] Totaro, B.: Configuration spaces of algebraic varieties. Topology. 35(4), 1057-1067 (1996) · Zbl 0857.57025 · doi:10.1016/0040-9383(95)00058-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.