×

Nonlinear asymptotic stability of traveling waves of system for gas dynamics in thermal nonequilibrium. (English) Zbl 1439.35048

This is a very nice piece of work in a popular area. The authors study a sort of quasi-equilibrium system: a simple non-equilibrium system that is close to euilibrium at any instant. The authors established nonlinear asymptotic stability of small shock under small initial data. In this setting the shock is observable.

MSC:

35B35 Stability in context of PDEs
35C07 Traveling wave solutions
35Q31 Euler equations
35B40 Asymptotic behavior of solutions to PDEs
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Caflisch, RE; Liu, T-P, Stability of shock waves for the Broadwell equations, Commun. Math. Phys., 114, 103-130 (1988) · Zbl 0665.76089 · doi:10.1007/BF01218291
[2] Degond, P.; Génieys, S.; Jüngel, A., A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl., 76, 991-1015 (1997) · Zbl 0907.35059 · doi:10.1016/S0021-7824(97)89980-1
[3] Fan, L.; Matsumura, A., Asymptotic stability of a composite wave of two viscous shock waves for a one-dimensional system of non-viscous and heat-conductive ideal gas, J. Differ. Equ., 258, 1129-1157 (2015) · Zbl 1309.35047 · doi:10.1016/j.jde.2014.10.010
[4] Gilbarg, D., The existence and limit behavior of the one-dimensional shock layer, Am. J. Math., 73, 256-274 (1951) · Zbl 0044.21504 · doi:10.2307/2372177
[5] Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95, 325-344 (1986) · Zbl 0631.35058 · doi:10.1007/BF00276840
[6] Huang, F.; Matsumura, A., Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation, Commun. Math. Phys., 289, 841-861 (2009) · Zbl 1172.35054 · doi:10.1007/s00220-009-0843-z
[7] Huang, F.; Wang, Y.; Yang, T., Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem, Arch. Ration. Mech. Anal., 203, 379-413 (2012) · Zbl 1286.76125 · doi:10.1007/s00205-011-0450-y
[8] Jin, S.; Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., 48, 235-276 (1995) · Zbl 0826.65078 · doi:10.1002/cpa.3160480303
[9] Kawashima, S.; Matsumura, A., Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101, 97-127 (1985) · Zbl 0624.76095 · doi:10.1007/BF01212358
[10] Liu, H., Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws, J. Differ. Equ., 192, 285-307 (2003) · Zbl 1039.35063 · doi:10.1016/S0022-0396(03)00124-4
[11] Liu, T-P, Hyperbolic conservation laws with relaxation, Commun. Math. Phys., 108, 153-175 (1987) · Zbl 0633.35049 · doi:10.1007/BF01210707
[12] Liu, T-P; Zeng, Y., Shock waves in conservation laws with physical viscosity, Mem. Am. Math. Soc., 234, vi+168 (2015) · Zbl 1338.35369
[13] Liu, T-P, Pointwise convergence to shock waves for viscous conservation laws, Commun. Pure Appl. Math., 50, 1113-1182 (1997) · Zbl 0902.35069 · doi:10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D
[14] Liu, T-P; Zeng, Y., Time-asymptotic behavior of wave propagation around a viscous shock profile, Commun. Math. Phys., 290, 23-82 (2009) · Zbl 1190.35033 · doi:10.1007/s00220-009-0820-6
[15] Luo, T.; Xin, Z., Nonlinear stability of shock fronts for a relaxation system in several space dimensions, J. Differ. Equ., 139, 365-408 (1997) · Zbl 0893.35072 · doi:10.1006/jdeq.1997.3302
[16] Luo, T.; Yang, T., Global structure and asymptotic behavior of weak solutions to flood wave equations, J. Differ. Equ., 207, 117-160 (2004) · Zbl 1058.35151 · doi:10.1016/j.jde.2004.08.025
[17] Shizuta, Y.; Kawashima, S., Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14, 249-275 (1985) · Zbl 0587.35046 · doi:10.14492/hokmj/1381757663
[18] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), New York: Springer, New York · Zbl 0807.35002
[19] Szepessy, A.; Xin, Z., Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal., 122, 53-103 (1993) · Zbl 0803.35097 · doi:10.1007/BF01816555
[20] Vincenti, W.; Kruger, C. Jr, Introduction to Physical Gas Dynamics (1986), Malabar: Krieger, Malabar
[21] Whitham, GB, Linear and Nonlinear Waves (1974), New York: Wiley, New York · Zbl 0373.76001
[22] Xu, W-Q, Relaxation limit for piecewise smooth solutions to systems of conservation laws, J. Differ. Equ., 162, 140-173 (2000) · Zbl 0949.35088 · doi:10.1006/jdeq.1999.3653
[23] Yong, W-A; Zumbrun, K., Existence of relaxation shock profiles for hyperbolic conservation laws, SIAM J. Appl. Math., 60, 1565-1575 (2000) · Zbl 0959.35116 · doi:10.1137/S0036139999352705
[24] Yu, S., Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws, Arch. Ration. Mech. Anal., 146, 275-370 (1999) · Zbl 0935.35101 · doi:10.1007/s002050050143
[25] Zeng, Y., Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation, Arch. Ration. Mech. Anal., 150, 225-279 (1999) · Zbl 0966.76079 · doi:10.1007/s002050050188
[26] Zeng, Y., Thermal non-equilibrium flows in three space dimensions, Arch. Ration. Mech. Anal., 219, 27-87 (2016) · Zbl 1333.35217 · doi:10.1007/s00205-015-0892-8
[27] Zeng, Y., Gas flows with several thermal nonequilibrium modes, Arch. Ration. Mech. Anal., 196, 191-225 (2010) · Zbl 1205.35236 · doi:10.1007/s00205-009-0247-4
[28] Zeng, H., Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws, J. Differ. Equ., 246, 2081-2102 (2009) · Zbl 1171.35325 · doi:10.1016/j.jde.2008.07.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.