×

A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. (English) Zbl 0907.35059

The paper under review is concerned with the following system of nonlinear PDE’s in the cylinder \(\Omega \times (0, \tau)\): \[ \begin{aligned} \frac{\partial \rho_{i}}{\partial t}+ \text{div }J_{i} &= W_{i}\quad (i=1, \cdots, n), \tag{1}\\ \frac{\partial U}{\partial t}+ \text{div } J_{n+1}&= \sum^{n}_{k=1} F_{k} \cdot J_{k}+ W_{n+1},\tag{2}\\ -\Delta V&= \sum^{n}_{k=1 }e_{k} \rho_{k}+ C,\tag{3} \end{aligned} \] where \(\rho_{i}\) is the density, \(J_{i}\) the carrier flux density, \(e_{i}\) the particle charge \((i=1,\dots, n)\), \(U\) the internal energy density, \( J_{n+1}\) the heat flux, and \(C=C(x)\) a given function. Equations (1)–(3) model the evolution of a gas or fluid consisting of \(n\) components, in the bounded domain \( \Omega \subset \mathbb{R}^{d}\) \((d\geq 1)\). The following assumptions are made: \(\rho_{i}= \rho_{i}(u)\), \(\rho\) is strongly monotone, \(\rho= \bigtriangledown \chi\), \(F_{k} =-e_{k}\bigtriangledown V\), \(J_{i} =-\sum^{n+1}_{j=1} L_{ij}X_{j}\), where \[ u= \left\{ \frac{\mu_{1}}{T},\cdots,\frac{\mu_{1}}{T}, -\frac{1}{T} \right\}, \quad X_{i}= \bigtriangledown \left( \frac{\mu_{1}}{T}\right)+ e_{i} \frac{\bigtriangledown V}{T} \quad (i=1,\dots, n), \qquad X_{n+1}=- \bigtriangledown \left( \frac{1}{T}\right), \] where \(\mu_{i}\) is the chemical potential, and \(T\) is the temperature. Equations (1)–(3) are supplemented by mixed Dirichlet and Neumann conditions on \(u\) and \(V\) on \(\partial \Omega\), and the initial condition \(u( \cdot, 0)= u_{0}\) in \(\Omega\).
The authors introduce new dependent variables \(w_{i}= u_{i}- e_{i} u_{n+1}V\) \((i=1,\cdots, n)\), \(w_{n+1}=u_{n+1}\), which symmetrize the problem under consideration. For this problem the existence of a weak solution is proved (when \(d=3\) only Dirichlet conditions on the whole boundary \(\partial \Omega\) are considered). The method of proof is based on a semidiscretization of time, where the resulting elliptic problems are solved by using estimates on the discrete entropy function and the Leray-Schauder fixed point theorem.
In the last section the authors show that the solution tends to the thermal equilibrium state when \(\tau \rightarrow+ \infty\), if the boundary data are in thermal equilibrium.
Reviewer: J.Naumann (Berlin)

MSC:

35K50 Systems of parabolic equations, boundary value problems (MSC2000)
78A35 Motion of charged particles
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Ben Abdallah, N.; Degond, P., On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37, 3308-3333 (1996) · Zbl 0868.45006
[2] Ben Abdallah, N.; Desvillettes, L.; Génieys, S., On the convergence of the Boltzmann equation for semiconductors towards an energy transport model (1997), In preparation · Zbl 0991.82027
[3] Ben Abdallah, N.; Degond, P.; Génieys, S., An energy-transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys., 84, 205-231 (1996) · Zbl 1081.82610
[4] Albinus, G., A thermodynamically motivated formulation of the energy model of semiconductor devices (1995), Weierstrass-Institut: Weierstrass-Institut Berlin, Preprint No. 210
[5] Allegretto, W.; Xie, H., Nonisothermal semiconductor systems, (Liu, X.; Siegel, D., Comparison methods and stability theory. Comparison methods and stability theory, Lecture notes in pure and applied mathematics, vol. 162 (1994), Marcel Dekker: Marcel Dekker New York) · Zbl 0818.35119
[6] Alt, H.; Luckhaus, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 311-341 (1983) · Zbl 0497.35049
[7] Apanovich, Y.; Lyumkis, E.; Polsky, B.; Shur, A.; Blakey, P., Steady-state and transient analysis of submicron devices using energy-balance and simplified hydrodynamic models, IEEE Trans. CAD of Integ. Circuits Syst., 13, 702-711 (1994)
[8] Bermudez, A.; Saquez, C., Mathematical formulation and numerical solution of an alloy solidification problem, (Fasano, A., Free Boundary Problems: Theory and Applications, volume 1 (1983), Pitman), 237-247 · Zbl 0506.65043
[9] Chen, D.; Kan, E.; Ravaioll, U.; Shu, C.; Dutton, R., An improved energy transport model including nonparabolicity and non-maxwellian distribution effects, IEEE Electr. Dev. Letters, 13, 26-28 (1992)
[10] Choi, Y.; Lui, R., Multi-dimensional electrochemistry model, Arch. Rat. Mech. Anal., 130, 315-342 (1995) · Zbl 0832.35013
[11] Degond, P.; Génieys, S.; Jüngel, A., A steady-state system in nonequilibrium thermodynamics including thermal and electrical effects, Math. Meth. Appl. Sci. (1996), To appear in
[12] Degond, P.; Schmeiser, C., Macroscopic models for semiconductor heterostructures, Article in preparation (1997) · Zbl 0938.82049
[13] (Deyl, Z., Electrophoresis: A survey of techniques and applications (1979), Elsevier: Elsevier Amsterdam)
[14] Filo, J.; Kačur, J., Local existence of general nonlinear parabolic systems, Nonlin. Anal., 24, 1597-1618 (1995) · Zbl 0830.35053
[15] Gajewski, H.; Gröger, K., Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr., 140, 7-36 (1989) · Zbl 0681.35081
[16] Génieys, S., Energy-transport model for a non degenerate semiconductor, (Convergence of the Hilbert expansion in the linearized case. Convergence of the Hilbert expansion in the linearized case, Asympt. Anal. (1997)), To appear in · Zbl 0931.35172
[17] Gröger, K., A \(W^{1,p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283, 679-687 (1989) · Zbl 0646.35024
[18] De Groot, S., Thermodynamik irreversibler Prozesse (1960), Bibliographisches Institut: Bibliographisches Institut Mannheim · Zbl 0124.45703
[19] De Groot, S.; Mazur, P., Non-equilibrium thermodynamics (1984), Dover · Zbl 1375.82004
[20] Hills, R.; Loper, D.; Roberts, P., A thermodynamically consistent model of a mushy zone, Q. J. Mech. Appl. Math., 36, 505-539 (1983) · Zbl 0549.73002
[21] Jerome, J., Approximation of Nonlinear Evolution Systems (1983), Academic Press: Academic Press New York · Zbl 0512.35001
[22] Jüngel, A., Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models. Meth. Appl. Sci., 5, 497-518 (1995) · Zbl 0841.35114
[23] Jüngel, A., Stationary transport equations for charge carriers in semiconductors including electron-hole scattering, Appl. Anal., 62, 53-69 (1996) · Zbl 0866.35047
[24] Kačur, J., Method of Rothe in Evolution Equations (1985), Teubner: Teubner Leipzig · Zbl 0582.65084
[25] Kreuzer, H., Nonequilibrium Thermodynamics and its Statistical Foundation (1981), Clarendon Press: Clarendon Press Oxford
[26] Naumann, J.; Wolff, M., On a global \(L^q\) estimate on weak solutions of nonlinear elliptic systems (1991), Dipartimento di Matematica, Università di Catania: Dipartimento di Matematica, Università di Catania Italy, Preprint · Zbl 0756.35105
[27] Otto, F., \(L^l\)-contraction and uniqueness for quasilinear elliptic-parabolic systems (1995), Universität Bonn: Universität Bonn Germany, Preprint no. 397 · Zbl 0845.35056
[28] Shamir, E., Regularization of mixed second-order elliptic problems, Israel J. Math., 6, 150-168 (1968) · Zbl 0157.18202
[29] Simon, J., Compact sets in the space \(L^P\)(0, T; B), Ann. Math. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[30] Souissi, K.; Odeh, F.; Tang, H.; Gnudi, A., Comparative studies of hydrodynamic and energy transport models, COMPEL, 13, 439-453 (1994) · Zbl 0811.76069
[31] Stampacchia, G., Equations elliptiques du second ordre à coefficients discontinus (1966), Les Presses de l’Université de Montréal: Les Presses de l’Université de Montréal Canada · Zbl 0151.15501
[32] Troianiello, G. M., Elliptic Differential Equations and Obstacle Problems (1987), Plenum Press: Plenum Press New York · Zbl 0655.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.