×

On the study and application of limit cycles of a kind of piecewise smooth equation. (English) Zbl 1439.34024

Summary: We study the piecewise smooth equation of the form: \[ \frac{dx}{dt}=S(t,x)= \begin{cases} S_1(t,x)=a_1(t)x^m+b(t), & \quad \text{if} \quad x\ge{0}, \\ S_2(t,x)=a_2(t)x^m+b(t), & \quad \text{if} \quad x<0, \end{cases}\] where \((t,x)\in [0,2\pi ]\times{\mathbb{R}}, m\in{{\mathbb{Z}}^+}\) and \(a_1(t), a_2(t), b(t)\) are \(2\pi \)-periodic smooth functions. A solution of the equation satisfying \(x(0)=x(2\pi )\) is called a periodic solution. Moreover, such solution is called a limit cycle if and only if it is isolated. We obtain that the maximum number of limit cycles for this equation is 1 (resp. 2) if \((-1)^ma_1(t)\cdot a_2(t)<0\) (resp. \((-1)^ma_1(t)\cdot a_2(t)>0)\). In this study we pay more attention to the examples in which the equation has limit cycle(s) crossing the separation straight line \(x=0\). In the end, we apply this result on a kind of piecewise smooth planar system which has a separation curve \(x^2+y^2=1\).

MSC:

34A36 Discontinuous ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
37C60 Nonautonomous smooth dynamical systems
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
Full Text: DOI

References:

[1] Buzzi, C.; Pessoa, C.; Torregrosa, J., Piecewise linear perturbation of a linear center, Discrete Contin. Dyn. Syst., 33, 9, 3915-3936 (2013) · Zbl 1312.37037 · doi:10.3934/dcds.2013.33.3915
[2] Han, M.; Zhang, W., On Hopf bifurcation in non-smooth planar systems, J. Differ. Equ., 248, 9, 2399-2416 (2010) · Zbl 1198.34059 · doi:10.1016/j.jde.2009.10.002
[3] Huan, S.; Yang, X., On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32, 6, 2147-2164 (2012) · Zbl 1248.34033 · doi:10.3934/dcds.2012.32.2147
[4] Cardin, Pt; Torregrosa, J., Limit cycles in planar piecewise linear differential systems with nonregular separation line, Phys. D, 337, 67-82 (2016) · Zbl 1376.34028 · doi:10.1016/j.physd.2016.07.008
[5] Freire, E.; Ponce, E.; Torres, F., The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58, 221-253 (2014) · Zbl 1343.34077 · doi:10.5565/PUBLMAT_Extra14_13
[6] Euzébio, Rd; Llibre, J., On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 424, 1, 475-486 (2015) · Zbl 1309.34039 · doi:10.1016/j.jmaa.2014.10.077
[7] Llibre, J.; Novaes, Dd; Teixeira, Ma, Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones, Int. J. Bifur. Chaos Appl. Sci. Eng., 25, 11, 1550144 (2015) · Zbl 1327.34067 · doi:10.1142/S0218127415501448
[8] Llibre, J.; Novaes, Dd; Teixeira, Ma, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dyn., 82, 3, 1159-1175 (2015) · Zbl 1348.34065 · doi:10.1007/s11071-015-2223-x
[9] Li, S.; Cen, X.; Zhao, Y., Bifurcation of limit cycles by perturbing piecewise smooth integrable non-Hamiltonian systems, Nonlinear Anal. Real World Appl., 34, 140-148 (2017) · Zbl 1354.34070 · doi:10.1016/j.nonrwa.2016.08.005
[10] Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Osciallators (Pergramon Press, Oxford, New York (1966), Translated from the Russian by F. Immirzi; Translation edited and abridged by W. Fishwick) · Zbl 0188.56304
[11] Filippov, Af, Differential Equations with Discontinuous Right-Hand Sides (1988), Amsterdam: Kluwer Academic, Amsterdam · Zbl 0664.34001
[12] Bernardo, M.; Budd, Cj; Champneys, Ar; Kowalczyk, P., Picewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences (2008), London: Springer, London · Zbl 1146.37003
[13] Freire, E.; Ponce, E.; Rodrigo, F.; Torres, F., Bifurcation sets of continuous piecewise linear systems with two zones, Int. J. Bifurc. Chaos, 8, 2073-2097 (1998) · Zbl 0996.37065 · doi:10.1142/S0218127498001728
[14] Llibre, J.; Ordóñez, M.; Ponce, E., On the existence and uniqueness of limit cycles in a planar piecewise linear systems without symmetry, Nonlinear Anal. Real World Appl., 14, 2002-2012 (2013) · Zbl 1293.34047 · doi:10.1016/j.nonrwa.2013.02.004
[15] Lins-Neto, A., On the number of solution of the equation \(\frac{dx}{dt}=\sum_{j=0}^na_j(t)x^j, 0\le t\le 1\) for with \(x(0)=x(1)\), Invent. Math., 59, 67-76 (1980) · Zbl 0448.34012 · doi:10.1007/BF01390315
[16] Devlin, J.; Lloyd, Ng; Pearson, Jm, Cubic systems and Abel equations, J. Differ. Equ., 147, 435-454 (1998) · Zbl 0911.34020 · doi:10.1006/jdeq.1998.3420
[17] Gasull, A.; Llibre, J., Limit cycles for a class of Abel equation, SIAM J. Math. Anal., 21, 1235-1244 (1990) · Zbl 0732.34025 · doi:10.1137/0521068
[18] Álvarez, Mj; Bravo, Jl; Fernández, M., Existence of non-trivial limit cycles in Abel equations with symmetries, Nonlinear Anal. Theor. Meth. Appl., 84, 18-28 (2013) · Zbl 1312.34079 · doi:10.1016/j.na.2013.02.001
[19] Álvarez, Mj; Gasull, A.; Giacomini, H., A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differ. Equ., 234, 161-176 (2007) · Zbl 1118.34036 · doi:10.1016/j.jde.2006.11.004
[20] Benterki, R.; Llibre, J., Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities, J. Math. Anal. Appl., 407, 16-22 (2013) · Zbl 1314.34065 · doi:10.1016/j.jmaa.2013.04.076
[21] Bravo, Jl; Fernández, M.; Gasull, A., Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bifurc. Chaos, 19, 3869-3876 (2009) · Zbl 1182.34056 · doi:10.1142/S0218127409025195
[22] Huang, J.; Zhao, Y., Periodic solutions for equation \({\dot{x}}=A(t)x^m+B(t)x^n+C(t)x^l\) with \(A(t)\) and \(B(t)\) changing signs, J. Differ. Equ., 253, 73-99 (2012) · Zbl 1277.34047 · doi:10.1016/j.jde.2012.03.021
[23] Álvarez, A.; Bravo, Jl; Fernández, M., The number of limit cycles for generalilized Abel equations with periodic coefficients of definited sign, Commun. Pure Appl. Anal, 8, 5, 1493-1501 (2009) · Zbl 1273.34045 · doi:10.3934/cpaa.2009.8.1493
[24] Carmona, V.; Freire, E.; Ponce, E.; Torres, F., Invariant manifolds of periodic orbits for piecewise linear three-dimensional systems, IMA J. Appl. Math., 69, 71-91 (2004) · Zbl 1057.37017 · doi:10.1093/imamat/69.1.71
[25] Coll, B.; Gasull, A.; Prohens, R., Simple non-autonomous differential equations with many limit cycle, Commun. Appl. Nonlinear Anal., 15, 29-34 (2008) · Zbl 1152.34326
[26] Mawhin, J., First order ordinary differential equations with several periodic solutions, J. Appl. Math. Phys., 38, 257-265 (1987) · Zbl 0644.34035
[27] Llibre, J.; Teruel, Ae, Introduction to the Qualitative Theory of Differential Systems (Mathematics Subject Classification), 61-180 (2010), Basel: Springer, Basel
[28] Lloyd, Ng, A note on the number of limit cycles in certain two-dimensional systems, J. Lond. Math. Soc., 20, 277-286 (1979) · Zbl 0407.34027 · doi:10.1112/jlms/s2-20.2.277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.