×

The two-dimensional inverse conductivity problem. (English) Zbl 1439.32029

Summary: In this article, we introduce a process to reconstruct a Riemann surface with boundary equipped with a linked conductivity tensor from its boundary and the Dirichlet-Neumann operator associated with this conductivity. When initial data come from a two-dimensional real Riemannian surface equipped with a conductivity tensor, this process recovers its conductivity structure.

MSC:

32F99 Geometric convexity in several complex variables
32D15 Continuation of analytic objects in several complex variables
32V15 CR manifolds as boundaries of domains
35R30 Inverse problems for PDEs
58J32 Boundary value problems on manifolds

References:

[1] Agaltsov, A.; Henkin, G., Explicit reconstruction of Riemann surface with given boundary in complex projective space, J. Geom. Anal., 25, 4, 2450-2473 (2015) · Zbl 1334.30019 · doi:10.1007/s12220-014-9522-1
[2] Ahlfors, LV; Sario, L., Riemann Surfaces (1960), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0196.33801
[3] Andreotti, A.; Hill, CD, E. E. Levi convexity and the Hans Lewy problem. Part I, Ann. Sc. Norm. Super. Pisa, 26, 2, 325-363 (1972) · Zbl 0256.32007
[4] Andreotti, A.; Hill, CD, E. E. Levi convexity and the Hans Lewy problem. Part II, Ann. Sc. Norm. Super. Pisa, 28, 4, 747-806 (1972) · Zbl 0283.32013
[5] Astala, Kari; Päivärinta, Lassi; Lassas, Matti, Calderón’s inverse problem for anisotropic conductivity in the plane, Commun. Partial Differ. Equ., 30, 1-3, 207-224 (2005) · Zbl 1129.35483 · doi:10.1081/PDE-200044485
[6] Belishev, M., The Calderon problem for two dimensional manifolds by the BC-method, SIAM J. Math. Anal., 35, 1, 172-182 (2003) · Zbl 1048.58019 · doi:10.1137/S0036141002413919
[7] Belishev, M.; Sharafutdinov, V., Dirichlet to Neumann operator on differential forms, Bull. Sci. Math., 132, 2, 128-145 (2008) · Zbl 1133.58017 · doi:10.1016/j.bulsci.2006.11.003
[8] Collion, S., Transformation d’Abel et formes différentielles algébriques, C. R. Acad. Sci. Paris Sér. I Math., 323, 12, 1237-1242 (1996) · Zbl 0874.32003
[9] Demailly, J.-P.: Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
[10] Dolbeault, P.; Henkin, G., Chaînes holomorphes de bord donné dans \(\mathbb{CP}^n \), Bull. Soc. Math. Fr., 125, 383-445 (1997) · Zbl 0942.32007 · doi:10.24033/bsmf.2312
[11] Griffiths, P.; Harris, J., Principles of Algebraic Geometry (1978), New York: Wiley, New York · Zbl 0408.14001
[12] Gutarts, B.: The inverse boundary value problem for the two-dimensional elliptic equation in anisotropic media. J. Math. Stat. Allied Fields 1(1), HTML files (2007)
[13] Harvey, F.; Lawson, HB, Boundaries of complex analytic varieties. I, Ann. Math., 102, 233-290 (1975) · Zbl 0317.32017 · doi:10.2307/1971032
[14] Harvey, R., Holomorphic chains and their boundaries, Proc. Symp. Pure Math., 30, 309-382 (1977) · Zbl 0374.32002 · doi:10.1090/pspum/030.1/0447619
[15] Henkin, G.: The Abel-Radon Transform and Several Complex Variables. In: Blooms, T. et al. (eds.) Modern Methods in Complex Analysis (Princeton, NJ, 1992). Ann. of Math. Stud., vol. 137, pp. 223-275. Princeton Univ. Press, Princeton, NJ (1995) · Zbl 0848.32012
[16] Henkin, G., Abel-Radon Transform and Applications, 567-584 (2004), Berlin: Springer, Berlin · Zbl 1075.44002
[17] Henkin, G.; Michel, V., On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator, Geom. Funct. Anal., 17, 1, 116-155 (2007) · Zbl 1118.32009 · doi:10.1007/s00039-006-0590-7
[18] Henkin, G.; Michel, V., Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18, 4, 1033-1052 (2008) · Zbl 1151.35101 · doi:10.1007/s12220-008-9035-x
[19] Henkin, G.; Michel, V., Inverse Dirichlet-to-Neumann problem for nodal curves, Russ. Math. Surv., 67, 6, 1069-1089 (2012) · Zbl 1272.32012 · doi:10.1070/RM2012v067n06ABEH004818
[20] Henkin, G.; Michel, V., Problème de Plateau complexe feuilleté. Phénomènes de Hartogs-Severi et Bochner pour des feuilletages CR singuliers, Bull. Soc. Math. Fr., 142, 1, 95-126 (2014) · Zbl 1300.32008 · doi:10.24033/bsmf.2660
[21] Henkin, G.; Michel, V., Bishop-Runge approximations and inversion of the Riemann-Klein theorem, Math. Sb., 206, 2, 149-174 (2015) · Zbl 1318.32012 · doi:10.1070/SM2015v206n02ABEH004459
[22] Henkin, G.; Novikov, R., On the reconstruction of conductivity of a bordered two-dimensional surface in \({\mathbb{R}}^3\) from electrical current measurements on its boundary, J. Geom. Anal., 21, 3, 543-587 (2011) · Zbl 1227.35244 · doi:10.1007/s12220-010-9158-8
[23] Henkin, G.; Santacesaria, M., On an inverse problem for anisotropic conductivity in the plane, Inverse Probl., 26, 9, 095011-095018 (2010) · Zbl 1200.35328 · doi:10.1088/0266-5611/26/9/095011
[24] Henkin, G.; Santacesaria, M., Gelfand-Calderón’s inverse problem for anisotropic conductivities on bordered surfaces in \({\mathbb{R}}^3\), Int. Math. Res. Not. IMRN, 4, 781-809 (2012) · Zbl 1245.58006 · doi:10.1093/imrn/rnr046
[25] Kohn, R.; Vogelius, M., Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37, 3, 289-298 (1984) · Zbl 0586.35089 · doi:10.1002/cpa.3160370302
[26] Kohn, R.V., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. In: McLaughlin, D. (ed.) Inverse Problems (New York, 1983). SIAM-AMS Proc., vol. 14, Am. Math. Soc., Providence, RI, pp. 113-123 (1984) · Zbl 0573.35084
[27] Lassas, M.; Uhlmann, G., On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup. (4), 34, 5, 771-787 (2001) · Zbl 0992.35120 · doi:10.1016/S0012-9593(01)01076-X
[28] Laurent-Thiébaut, C.: Formule des résidus et théoréme de plemelj un une variété de stein. Ph.D. thesis, Université Pierre et Marie Curie (1985)
[29] Lee, J.; Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., 42, 8, 1097-1112 (1989) · Zbl 0702.35036 · doi:10.1002/cpa.3160420804
[30] Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math. (2), 143, 1, 71-96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[31] Novikov, R., A multidimensional inverse spectral problem for the equation \(-\Delta \psi +(v(x)-Eu(x))\psi =0\), Funktsional. Anal. Prilozh., 22, 4, 11-22,96 (1988) · Zbl 0689.35098
[32] Rosenlicht, M., Generalized Jacobian varieties, Ann. Math. (2), 59, 505-530 (1954) · Zbl 0058.37002 · doi:10.2307/1969715
[33] Sharafutdinov, V.; Shonkwiler, C., The complete Dirichlet-to-Neumann map for differential forms, J. Geom. Anal., 23, 4, 2063-2080 (2013) · Zbl 1283.58003 · doi:10.1007/s12220-012-9320-6
[34] Sylvester, J., An anisotropic inverse boundary value problem, Commun. Pure Appl. Math., 43, 201-232 (1990) · Zbl 0709.35102 · doi:10.1002/cpa.3160430203
[35] Taylor, ME, Partial Differential Equations II. Qualitative Studies of Linear Equations (2011), New York: Springer, New York · Zbl 1206.35003
[36] Varolin, Dror, Riemann Surfaces by Way of Complex Analytic Geometry (2011), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1232.30003
[37] Wood, J., A simple criterion for local hypersurfaces to be algebraic, Duke Math. J., 51, 1, 235-237 (1984) · Zbl 0584.14021 · doi:10.1215/S0012-7094-84-05112-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.