×

Inverse conductivity problem on Riemann surfaces. (English) Zbl 1151.35101

Summary: An electrical potential \(U\) on a bordered Riemann surface \(X\) with conductivity function \(\sigma >0\) satisfies equation \(d(\sigma d^c U)=0\). The problem of effective reconstruction of \(\sigma \) from electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary: \(U|_{bX} \rightarrowtail \sigma d^c U|_{bX}\) is studied. We extend to the case of Riemann surfaces the reconstruction scheme given, firstly, by R. G. Novikov [Funct. Anal. Appl. 22, No. 4, 263–272 (1988); translation from Funkts. Anal. Prilozh. 22, No. 4, 11–22 (1988; Zbl 0689.35098)] for simply connected \(X\). We apply for this new kernels for \(\bar{\partial}\) on the affine algebraic Riemann surfaces constructed by G. Khenkin [Cauchy-Pompeiu type formulas for \(d\)-bar on affine algebraic Riemann surfaces and some applications, preprint 2008, arXiv:0804.3761].

MSC:

35R30 Inverse problems for PDEs
81U40 Inverse scattering problems in quantum theory
35R05 PDEs with low regular coefficients and/or low regular data
35Q40 PDEs in connection with quantum mechanics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Citations:

Zbl 0689.35098

References:

[1] Beals, R., Coifman, R.: Multidimensional inverse scattering and nonlinear partial differential equations. Proc. Symp. Pure Math. 43, 45–70 (1985) · Zbl 0575.35011
[2] Beals, R., Coifman, R.: The spectral problem for the Davey-Stewartson and Ishimori hierarchies. In: Nonlinear Evolution Equations: Integrability and Spectral Methodes. Proc. Workshop, Como, Italy, 1988, Proc. Nonlinear Sci., pp. 15–23 (1990)
[3] Belishev, M.I.: The Calderon problem for two dimensional manifolds by the BC-method. SIAM J. Math. Anal. 35(1), 172–182 (2003) · Zbl 1048.58019 · doi:10.1137/S0036141002413919
[4] Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22, 1009–1027 (1997) · Zbl 0884.35167 · doi:10.1080/03605309708821292
[5] Calderon, A.P.: On an inverse boundary problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasiliera de Matematica, Rio de Janeiro, pp. 61–73 (1980)
[6] Faddeev, L.D.: Increasing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR 165, 514–517 (1965) (in Russian). Sov. Phys. Dokl. 10, 1033–1035 (1966) · Zbl 0147.09404
[7] Faddeev, L.D.: The inverse problem in the quantum theory of scattering II. Curr. Probl. Math. 3, 93–180 (1974) (in Russian). J. Sov. Math. 5, 334–396 (1976) · Zbl 0299.35027
[8] Gel’fand, I.M.: Some problems of functional analysis and algebra. In: Proc. Int. Congr. Math., Amsterdam, pp. 253–276 (1954)
[9] Grinevich, P.G., Novikov, S.P.: Two-dimensional ”inverse scattering problem” for negative energies and generalized analytic functions. Funct. Anal. Appl. 22, 19–27 (1988) · Zbl 0672.35074 · doi:10.1007/BF01077719
[10] Henkin, G.M.: Two-dimensional electrical tomography and complex analysis. In: Lecture at the Mathematical Weekend. European Math. Soc., Nantes, June 16–18 2006. http://univ-nantes.fr/WEM2006
[11] Henkin, G.M.: Cauchy-Pompeiu type formulas for \(\bar{ \partial }\) on affine algebraic Riemann surfaces and some applications. arXiv:0804.3761 (2008) · Zbl 1250.35182
[12] Henkin, G.M., Michel, V.: On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator. 17, 116–155 (2007) · Zbl 1118.32009
[13] Lassas, M., Uhlmann, G.: On determining a Riemann manifold from the Dirichlet-to-Neumann map. Ann. Sci. Ec. Norm. Supper. 34, 771–787 (2001) · Zbl 0992.35120
[14] Novikov, R.: Multidimensional inverse spectral problem for the equation {\(\psi\)}+(vu){\(\psi\)}=0. Funkc. Anal. Ego Priloz. 22, 11–22 (1988) (in Russian). Funct. Anal. Appl. 22, 263–278 (1988)
[15] Novikov, R.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103, 409–463 (1992) · Zbl 0762.35077 · doi:10.1016/0022-1236(92)90127-5
[16] Novikov, R.: Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude at fixed energy. Funkc. Anal. Ego Priloz. 20, 90–91 (1986) (in Russian). Funct. Anal Appl. 20, 246–248 (1986) · Zbl 0637.35067
[17] Nachman, A.: Global uniqueness for a two-dimensional inverse boundary problem. Ann. Math. 143, 71–96 (1996) · Zbl 0857.35135 · doi:10.2307/2118653
[18] Rodin, Y.: Generalized Analytic Functions on Riemann Surfaces. Lecture Notes Math., vol. 1288. Springer, Berlin (1987) · Zbl 0637.30041
[19] Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43, 201–232 (1990) · Zbl 0709.35102 · doi:10.1002/cpa.3160430203
[20] Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 91–112 (1986) · Zbl 0611.35088 · doi:10.1002/cpa.3160390106
[21] Tsai, T.Y.: The Shrödinger equation in the plane. Inverse Prob. 9, 763–787 (1993) · Zbl 0797.35140 · doi:10.1088/0266-5611/9/6/012
[22] Vekua, I.N.: Generalized Analytic Functions. Pergamon, Elmsford (1962) · Zbl 0127.03505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.