×

Prediction of period doubling bifurcations in harmonically forced memristor circuits. (English) Zbl 1437.94106

Summary: The paper studies bifurcations and complex dynamics in a class of nonautonomous oscillatory circuits with a flux-controlled memristor and harmonic forcing term. It is first shown that, as in the autonomous case, the state space of any memristor circuit of the class can be decomposed in invariant manifolds. It turns out that the memristor circuit dynamics is given by the collection of the dynamics of a family of circuits, with a nonlinear resistor in place of the memristor, which is parameterized by an additional constant input whose value depends on the initial conditions of the memristor circuit. This property makes it possible to employ the harmonic balance method in order to study the periodic solutions and their bifurcations due to changing the amplitude and the frequency of the harmonic input on a fixed manifold or due to changing the initial conditions for a fixed harmonic input. The main result is that in both of these cases the harmonic balance method is quite effective to accurately predict period doubling bifurcations of the periodic solutions. Analytical predictions are obtained in the cases of linear-plus-cubic and piecewise linear memristor flux-charge characteristics.

MSC:

94C05 Analytic circuit theory
70K50 Bifurcations and instability for nonlinear problems in mechanics

Software:

MATCONT

References:

[1] Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[2] Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80-83 (2008) · doi:10.1038/nature06932
[3] Mazumder, P., Kang, S.M., Waser, R.: Special issue on memristors: devices, models, and applications. Proc. IEEE 100(6), 1911-1919 (2012) · doi:10.1109/JPROC.2012.2190812
[4] Tetzlaff, R. (ed.): Memristors and Memristive Systems. Springer, New York (2014)
[5] Adamatzky, A., Chua, L. (eds.): Memristor Networks. Springer, New York (2014) · Zbl 1282.68053
[6] Traversa, F.L., Di Ventra, M.: Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2702-2715 (2015) · doi:10.1109/TNNLS.2015.2391182
[7] Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319-368 (2015) · doi:10.13164/re.2015.0319
[8] Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183-3206 (2008) · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[9] Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale \[\text{ NbO }_2\] NbO2 Mott memristors for analogue computing. Nature 548, 318 (2017) · doi:10.1038/nature23307
[10] Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I, Reg. Pap. 58(6), 1323-1336 (2011) · Zbl 1468.94570 · doi:10.1109/TCSI.2010.2097731
[11] Gambuzza, L.V., Buscarino, A., Fortuna, L., Frasca, M.: Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans. Circuits Syst. I: Reg. Pap. 62(4), 1175-1184 (2015) · Zbl 1468.94603 · doi:10.1109/TCSI.2015.2395631
[12] Ascoli, A., Tetzlaff, R., Biolek, Z., Kolka, Z., Biolkova, V., Biolek, D.: The art of finding accurate memristor model solutions. IEEE J. Emerg. Sel. Topics Circuits Syst. 5(2), 133-142 (2015) · doi:10.1109/JETCAS.2015.2426493
[13] Kim, H., Sah, M., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061-2070 (2012) · doi:10.1109/JPROC.2011.2166749
[14] Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II 62(8), 786-790 (2015) · doi:10.1109/TCSII.2015.2433536
[15] Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335-1350 (2010) · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[16] Li, Q., Hu, S., Tang, S., Zeng, G.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172-1188 (2014) · doi:10.1002/cta.1912
[17] Scarabello, M.C., Messias, M.: Bifurcations leading to nonlinear oscillations in a 3D piecewise linear memristor oscillator. Int. J. Bifurc. Chaos 24(1), 1430001 (2014) · Zbl 1284.34085 · doi:10.1142/S0218127414300018
[18] Messias, M., Nespoli, C., Botta, V.A.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(02), 437-450 (2010) · Zbl 1188.34060 · doi:10.1142/S0218127410025521
[19] Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711-1723 (2016) · doi:10.1007/s11071-016-2988-6
[20] Ponce, E., Amador, A., Ros, J.: A multiple focus-center-cycle bifurcation in 4d discontinuous piecewise linear memristor oscillators. Nonlinear Dyn. 94, 3011-3028 (2018) · Zbl 1422.34134 · doi:10.1007/s11071-018-4541-2
[21] Yuan, F., Wang, G., Shen, Y., Wang, X.: Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonlinear Dyn. 86(1), 37-50 (2016) · doi:10.1007/s11071-016-2870-6
[22] Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702-3724 (2018) · Zbl 1426.37034 · doi:10.1007/s00034-018-0750-7
[23] Yuan, F., Wang, G., Wang, X.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27(3), 033103 (2017) · Zbl 1390.34162 · doi:10.1063/1.4975825
[24] Xu, B., Wang, Y., Shen, G.: A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88(3), 2071-2089 (2017) · doi:10.1007/s11071-017-3363-y
[25] Amador, A., Freire, E., Ponce, E., Ros, J.: On discontinuous piecewise linear models for memristor oscillators. Int. J. Bifurc. Chaos 27(06), 1730022 (2017) · Zbl 1370.34081 · doi:10.1142/S0218127417300221
[26] Ponce, E., Ros, J., Freire, E., Amador, A.: Unravelling the dynamical richness of 3d canonical memristor oscillators. Microelectron. Eng. 182, 15-24 (2017) · doi:10.1016/j.mee.2017.08.004
[27] Corinto, F., Forti, M.: Memristor circuits: flux-charge analysis method. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(1), 1997-2009 (2016) · doi:10.1109/TCSI.2016.2590948
[28] Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I, Reg. Pap. 64(6), 1540-1551 (2017) · doi:10.1109/TCSI.2016.2642112
[29] Corinto, F., Forti, M.: Memristor circuits: pulse programming via invariant manifolds. IEEE Trans. Circuits Syst. I: Reg. Pap. 65(4), 1327-1339 (2018) · doi:10.1109/TCSI.2017.2740999
[30] Di Marco, M., Forti, M., Innocenti, G., Tesi, A.: Harmonic balance method to analyze bifurcations in memristor oscillatory circuits. Int. J. Circuit Theory Appl. 46, 66-83 (2018) · doi:10.1002/cta.2414
[31] Atherton, D.P.: Nonlinear Control Engineering. Van Nostrand Reinhold, London (1975)
[32] Mees, A.I.: Dynamics of Feedback Systems. Wiley, New York (1981) · Zbl 0454.93003
[33] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upple Saddle River (2002) · Zbl 1003.34002
[34] Ahamed, A.I., Lakshmanan, M.: Discontinuity induced Hopf and Neimark-Sacker bifurcations in a memristive Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 27(06), 1730021 (2017) · Zbl 1370.34080 · doi:10.1142/S021812741730021X
[35] Xu, Q., Zhang, Q., Bao, B., Hu, Y.: Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039-21045 (2017) · doi:10.1109/ACCESS.2017.2727522
[36] Bao, B., Jiang, P., Wu, H., Hu, F.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333-2343 (2015) · doi:10.1007/s11071-014-1815-1
[37] Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 23(06), 1350098 (2013) · Zbl 1272.34058 · doi:10.1142/S0218127413500983
[38] Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A new driven memristive chaotic circuit. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1-4 (2013) · Zbl 1270.34097
[39] Murali, K., Lakshmanan, M., Chua, L.O.: The simplest dissipative nonautonomous chaotic circuit. IEEE Trans. Circuits Syst. I 41(6), 462-463 (1994) · Zbl 0871.94055 · doi:10.1109/81.295246
[40] Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531-548 (1992) · Zbl 0765.93030 · doi:10.1016/0005-1098(92)90177-H
[41] Piccardi, C.: Bifurcations of limit cycles in periodically forced nonlinear systems: the harmonic balance approach. IEEE Trans. Circuits Syst. I 41(12), 315-320 (1994) · doi:10.1109/81.285687
[42] Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics. Automatica 32(9), 1255-1271 (1996) · Zbl 0859.93028 · doi:10.1016/0005-1098(96)00065-9
[43] Basso, M., Genesio, R., Tesi, A.: A frequency method or predicting limit cycle bifurcations. Nonlinear Dyn. 13, 339-360 (1997) · Zbl 0890.34033 · doi:10.1023/A:1008298205786
[44] Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans. Circuits Syst. I(46), 881-890 (1999) · Zbl 0952.94017 · doi:10.1109/81.780370
[45] Di Marco, M., Forti, M., Tesi, A.: Harmonic balance approach to predict period-doubling bifurcations in nearly-symmetric neural networks. J. Circuits Syst. Comput. 12(4), 435-460 (2003) · doi:10.1142/S0218126603000969
[46] Innocenti, G., Tesi, A., Genesio, R.: Complex behaviour analysis in quadratic jerk systems via frequency domain Hopf bifurcation. Int. J. Bifurc. Chaos 20(3), 657-667 (2010) · Zbl 1193.34081 · doi:10.1142/S0218127410025946
[47] Lu, Y., Huang, X., He, S., Wang, D., Zhang, B.: Memristor based van der Pol oscillation circuit. Int. J. Bifurc. Chaos 24(12), 1450154 (2014) · Zbl 1305.34074 · doi:10.1142/S0218127414501545
[48] Galias, Z.: Study of amplitude control and dynamical behaviors of a memristive band pass filter circuit. IEEE Trans. Circuits Syst. II 65(5), 637-641 (2018) · doi:10.1109/TCSII.2018.2820104
[49] Chandía, K.J., Bologna, M., Tellini, B.: Multiple scale approach to dynamics of an LC circuit with a charge-controlled memristor. IEEE Trans. Circuits Syst. II 65(1), 120-124 (2018) · doi:10.1109/TCSII.2017.2699423
[50] Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141-164 (2003) · Zbl 1070.65574 · doi:10.1145/779359.779362
[51] Jimenez-Fernandez, V.M., Jimenez-Fernandez, M., Vazquez-Leal, H., Muñoz Aguirre, E., Cerecedo-Nuñez, H.H., Filobello-Niño, U.A., Castro-Gonzalez, F.J.: Transforming the canonical piecewise-linear model into a smooth-piecewise representation. SpringerPlus 5(1), 1612 (2016) · doi:10.1186/s40064-016-3278-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.