×

Memristor based van der Pol oscillation circuit. (English) Zbl 1305.34074

Summary: The memristor is referred to as the fourth fundamental passive circuit element of which inherent nonlinear properties offer to construct the chaos circuits. In this paper, a flux-controlled memristor circuit is developed, and then a van der Pol oscillator is implemented based on this new memristor circuit. The stability of the circuit, the occurring conditions of Hopf bifurcation and limit circle of the self-excited oscillation are analyzed; meanwhile, under the condition of the circuit with an external exciting source, the circuit exhibits a complicated nonlinear dynamic behavior, and chaos occurs within a certain parameter set. The memristor based van der Pol oscillator, furthermore, has been created by an analog circuit utilizing active elements, and there is a good agreement between the circuit responses and numerical simulations of the van der Pol equation. In the consequence, a new approach has been proposed to generate chaos within a nonautonomous circuit system.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
94C05 Analytic circuit theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Bao B. C., Acta Phys. Sin. 59 pp 3785– (2010)
[2] DOI: 10.1109/82.246166 · doi:10.1109/82.246166
[3] DOI: 10.1109/TCT.1971.1083337 · doi:10.1109/TCT.1971.1083337
[4] DOI: 10.1109/PROC.1976.10092 · doi:10.1109/PROC.1976.10092
[5] DOI: 10.1007/s00339-011-6318-z · doi:10.1007/s00339-011-6318-z
[6] DOI: 10.1016/j.cnsns.2012.06.011 · Zbl 1305.94120 · doi:10.1016/j.cnsns.2012.06.011
[7] DOI: 10.1142/S0218127411028763 · Zbl 1215.34051 · doi:10.1142/S0218127411028763
[8] DOI: 10.1142/S0218127413500983 · Zbl 1272.34058 · doi:10.1142/S0218127413500983
[9] DOI: 10.1142/S0218127408022354 · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[10] DOI: 10.1088/0143-0807/30/4/001 · Zbl 1173.78314 · doi:10.1088/0143-0807/30/4/001
[11] Jordan D. W., Forced Oscillations: Harmonic and Subharmonic Response, Stability, and Entrainment (2007)
[12] Mullins J., New Scientist 2715 (2009)
[13] DOI: 10.1142/S0218127410026514 · Zbl 1193.94082 · doi:10.1142/S0218127410026514
[14] DOI: 10.1109/TCSII.2010.2083150 · doi:10.1109/TCSII.2010.2083150
[15] DOI: 10.1016/j.camwa.2011.04.047 · Zbl 1228.65120 · doi:10.1016/j.camwa.2011.04.047
[16] DOI: 10.1038/nature06932 · doi:10.1038/nature06932
[17] DOI: 10.1016/j.mejo.2011.12.012 · doi:10.1016/j.mejo.2011.12.012
[18] DOI: 10.1016/j.physleta.2012.08.021 · Zbl 1396.34032 · doi:10.1016/j.physleta.2012.08.021
[19] DOI: 10.1109/MSPEC.2008.4687366 · doi:10.1109/MSPEC.2008.4687366
[20] Zhang J. Y., Geometric Theory of Ordinary Differential Equation and Bifurcation Problem (2000)
[21] DOI: 10.1109/81.340866 · doi:10.1109/81.340866
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.