×

Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals. (English) Zbl 1437.70035

Summary: The exact periodic orbits of a conservative 2-degree-of-freedom vibro-impact system with stereo-mechanical impact model is studied using a piecewise continuation method. Feasible initial guesses are extracted from grazing solution points so that each branch of solution can be initiated smoothly from previously solved ones. Frequency-energy plots (FEPs) are produced where an emphasis is placed on enumerating potential bifurcations. Extra critical points are discovered on multiple-period duplicates of existing stable solution branches and lead to cascades of period-multiplying bifurcations. The results indicate that the system’s complete FEP can be viewed through a process of infinite fractals toward zero frequency where pseudo-periodic or chaotic responses are approached. Finally, it is shown both mathematically and through the comparison of FEPs that the impacting system can be represented explicitly as the extreme case of nonlinear systems with an odd-order polynomial internal force. It is thus proposed that as the counterpart to the superposition of linear normal modes, the free responses of a general conservative nonlinear system can be tracked via bifurcations from its nonlinear normal modes.

MSC:

70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
37C27 Periodic orbits of vector fields and flows
70K75 Nonlinear modes
Full Text: DOI

References:

[1] Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222(10), 1899-1908 (2008) · doi:10.1243/09544062JMES864
[2] Popplewell, N., Liao, M.: A simple design procedure for optimum impact dampers. J. Sound Vib. 146(3), 519-526 (1991) · doi:10.1016/0022-460X(91)90707-Q
[3] Brake, M.R.: The effect of the contact model on the impact-vibration response of continuous and discrete systems. J. Sound Vib. 332(15), 3849-3878 (2013) · doi:10.1016/j.jsv.2013.02.003
[4] Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Classification principles of types of mechanical systems with impacts-fundamental assumptions and rules. Eur. J. Mech. A Solids 23(3), 517-537 (2004) · Zbl 1060.70514 · doi:10.1016/j.euromechsol.2004.02.005
[5] Brogliato, B., Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999) · Zbl 0917.73002 · doi:10.1007/978-1-4471-0557-2
[6] Van de Vorst, E.L.B., Van Campen, D.H., De Kraker, A., Fey, R.H.B.: Periodic solutions of a multi-dof beam system with impact. J. Sound Vib. 192(5), 913-925 (1996) · Zbl 1232.74078 · doi:10.1006/jsvi.1996.0225
[7] Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129-155 (1983) · Zbl 0561.70022 · doi:10.1016/0022-460X(83)90407-8
[8] Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99(2), 199-212 (1985) · doi:10.1016/0022-460X(85)90357-8
[9] Moussi, E.H., Bellizzi, S., Cochelin, B., Nistor, I.: Nonlinear normal modes of a two degrees-of-freedom piecewise linear system. Mech. Syst. Signal Process. 64, 266-281 (2015) · doi:10.1016/j.ymssp.2015.03.017
[10] Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Dynamics of a two-degree-of-freedom cantilever beam with impacts. Chaos Solitons Fractals 40(4), 1991-2006 (2009) · Zbl 1198.74038 · doi:10.1016/j.chaos.2007.09.097
[11] Czolczynski, K.: On the existence of a stable periodic solution of an impacting oscillator with damping. Chaos Solitons Fractals 19(5), 1291-1311 (2004) · Zbl 1077.70012 · doi:10.1016/S0960-0779(03)00336-9
[12] Aidanpää, J.-O., Gupta, R.B.: Periodic and chaotic behaviour of a threshold-limited two-degree-of-freedom system. J. Sound Vib. 165(2), 305-327 (1993) · Zbl 0925.70283 · doi:10.1006/jsvi.1993.1259
[13] Budd, C., Dux, F., Cliffe, A.: The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators. J. Sound Vib. 184(3), 475-502 (1995) · Zbl 0982.70517 · doi:10.1006/jsvi.1995.0329
[14] Yue, Y., Xie, J.H.: Symmetry and bifurcations of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 314(1-2), 228-245 (2008) · doi:10.1016/j.jsv.2008.01.003
[15] Yue, Y.: Bifurcations of the symmetric quasi-periodic motion and lyapunov dimension of a vibro-impact system. Nonlinear Dyn. 84(3), 1697-1713 (2016) · Zbl 1354.74187 · doi:10.1007/s11071-016-2598-3
[16] Masri, S.F.: Theory of the dynamic vibration neutralizer with motion-limiting stops. J. Appl. Mech. 39(2), 563-568 (1972) · Zbl 0235.70012 · doi:10.1115/1.3422718
[17] Pascal, M.: Dynamics and stability of a two degree of freedom oscillator with an elastic stop. J. Comput. Nonlinear Dyn. 1(1), 94-102 (2006) · doi:10.1115/1.1961873
[18] Nigm, M.M., Shabana, A.A.: Effect of an impact damper on a multi-degree of freedom system. J. Sound Vib. 89(4), 541-557 (1983) · Zbl 0562.70020 · doi:10.1016/0022-460X(83)90356-5
[19] Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29(1), 7-14 (1962) · Zbl 0113.07502 · doi:10.1115/1.3636501
[20] Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85-124 (1993) · Zbl 0925.70235 · doi:10.1006/jsvi.1993.1198
[21] Kerschen, G., Peeters, M., Golinval, J.-C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170-194 (2009) · doi:10.1016/j.ymssp.2008.04.002
[22] Pilipchuk, V.N.: The calculation of strongly non-linear systems close to vibration impact systems. J. Appl. Math. Mech. 49(5), 572-578 (1985) · Zbl 0614.70019 · doi:10.1016/0021-8928(85)90073-5
[23] Pilipchuk, V.N.: Nonlinear Dynamics: Between Linear and Impact Limits, vol. 52. Springer, London (2010) · Zbl 1202.37004
[24] Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. D Nonlinear Phenom. 238(18), 1868-1896 (2009) · Zbl 1179.37032 · doi:10.1016/j.physd.2009.06.013
[25] Thorin, A., Delezoide, P., Legrand, M.: Nonsmooth modal analysis of piecewise-linear impact oscillators. SIAM J. Appl. Dyn. Syst. 16(3), 1710-1747 (2017) · Zbl 1427.70056 · doi:10.1137/16M1081506
[26] Zhao, X., Dankowicz, H., Reddy, C.K., Nayfeh, A.H.: Modeling and simulation methodology for impact microactuators. J. Micromech. Microeng. 14(6), 775 (2004) · doi:10.1088/0960-1317/14/6/003
[27] Kang, W., Thota, P., Wilcox, B., Dankowicz, H.: Bifurcation analysis of a microactuator using a new toolbox for continuation of hybrid system trajectories. J. Comput. Nonlinear Dyn. 4(1), 011009 (2009) · doi:10.1115/1.3007975
[28] Kerschen, G., Vakakis, A.F., Lee, Y.S., Mcfarland, D.M., Kowtko, J.J., Bergman, L.A.: Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1: 1 resonance manifold and transient bridging orbits. Nonlinear Dyn. 42(3), 283-303 (2005) · Zbl 1106.70016 · doi:10.1007/s11071-005-4475-3
[29] Lamarque, C.-H., Janin, O.: Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. J. Sound Vib. 235, 567-609 (2000) · doi:10.1006/jsvi.1999.2932
[30] Jan, A., Claude-henri, L.: Bifurcation and Chaos in Nonsmooth Mechanical Systems, vol. 45. World Scientific, Singapore (2003) · Zbl 1067.70001
[31] Vakakis, A.F.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2009)
[32] Banerjee, A., Das, R., Calius, E.P.: Vibration transmission through an impacting mass-in-mass unit: an analytical investigation. Int. J. Nonlinear Mech. 90, 137-146 (2017) · doi:10.1016/j.ijnonlinmec.2017.01.005
[33] Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195-216 (2009) · doi:10.1016/j.ymssp.2008.04.003
[34] Nayfeh, A.H.: Applied Nonlinear Dynamics Analytical, Computational, and Experimental Methods. Wiley, New York (1995) · Zbl 0848.34001 · doi:10.1002/9783527617548
[35] Polya, G., Read, R.C.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, Berlin (2012)
[36] Kubicek, M., Marek, M.: Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, Berlin (2012) · Zbl 0529.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.