×

Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits. (English) Zbl 1106.70016

The considered system is composed of a linear oscillator, termed as the primary system, coupled to an essentially nonlinear oscillator, termed as the NES: \[ \begin{aligned} M\ddot y&+\varepsilon\lambda_1\dot y+\varepsilon\lambda(\dot y -\dot v)+\varepsilon(u-v)+ ky=0,\\ m\ddot v&+\varepsilon\lambda_2 \dot v+\varepsilon\lambda(\dot v-\dot y)+ \varepsilon(v-y)+Cv^3=0. \end{aligned} \] Variables \(y\) and \(v\) refer to the displacement of the primary system and of the NES, respectively. Weak coupling and damping is assured by requiring that \(\varepsilon\ll 1\), all other variables are treated as \(O(1)\) quantities; provided the input energy is high enough, a strongly nonlinear system can therefore be investigated. The periodic orbits of the undamped system \(\lambda=\lambda_1=\lambda_2=0\) are firstly studied. Then the authors examine the basic machanism for nonlinear energy pumping. In summary, the underlying dynamical phenomenon is a \(1\:1\) resonance capture. Numerical simulations are performed in a particular case, and many experimental results are given.

MSC:

70K99 Nonlinear dynamics in mechanics
70K30 Nonlinear resonances for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Vakakis, A. F., ’Inducing passive nonlinear energy sinks in vibrating systems’, Journal of Vibration and Acoustics 123, 2001, 324–332. · doi:10.1115/1.1368883
[2] Gendelman, O., Manevitch, L. I., Vakakis, A. F., and M’Closkey, R., ’Energy pumping in nonlinear mechanical oscillators: Part I – Dynamics of the underlying Hamiltonian systems’, Journal of Applied Mechanics 68, 2001, 34–41. · Zbl 1110.74452 · doi:10.1115/1.1345524
[3] Vakakis, A. F. and Gendelman, O., ’Energy pumping in nonlinear mechanical oscillators: Part II – Resonance capture’, Journal of Applied Mechanics 68, 2001, 42–48. · Zbl 1110.74725 · doi:10.1115/1.1345525
[4] Arnold, V.I., Dynamical Systems III (Encyclopaedia of Mathematical Sciences), Springer Verlag, Berlin, 1988.
[5] Quinn, D., Rand, R., and Bridge, J., ’The dynamics of resonance capture’, Nonlinear Dynamics 8, 1995, 1–20.
[6] Aubry, S., Kopidakis, G., Morgante, A. M., and Tsironis, G. P., ’Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers’, Physica B 296, 2001, 222–236. · doi:10.1016/S0921-4526(00)00804-8
[7] Kopidakis, G., Aubry, S., and Tsironis, G. P., ’Targeted energy transfer through discrete breathers in nonlinear systems’, Physical Review Letters 87, 2001, 165501. · doi:10.1103/PhysRevLett.87.165501
[8] Maniadis, P. and Aubry, S., ’Targeted energy transfer by fermi resonance’, Physica D 202, 2005, 200–217. · Zbl 1089.37534 · doi:10.1016/j.physd.2005.02.003
[9] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979. · Zbl 0418.70001
[10] Nayfeh, S. A. and Nayfeh, A. H., ’Energy transfer from high- to low-frequency modes in a flexible structure via modulation’, Journal of Vibration and Acoustics 116, 1994, 203–207. · doi:10.1115/1.2930413
[11] Pilipchuk, V. N., ’The calculation of strongly nonlinear systems close to vibration-impact systems’, PMM 49, 1985, 572–578. · Zbl 0614.70019
[12] Pilipchuk, V. N., Vakakis, A. F., and Azeez, M. F. A., ’Study of a class of subharmonic motions using a non-smooth temporal transformation’, Physica D 100, 1997, 145–164. · Zbl 0898.70012 · doi:10.1016/S0167-2789(96)00171-6
[13] Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A., Normal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996. · Zbl 0917.93001
[14] Panagopoulos, P. N., Vakakis, A. F., and Tsakirtzis, S., ’Transient resonant interactions of finite linear chains with essentially nonlinear end attachments leading to passive energy pumping’, International Journal of Solids and Structures 41, 2004, 6505–6528. · Zbl 1086.70010 · doi:10.1016/j.ijsolstr.2004.05.005
[15] Vakakis, A. F., McFarland, D. M., Bergman, L. A., Manevitch, L. I., and Gendelman, O., ’Isolated resonance captures and resonance capture cascades leading to single- or multi-mode passive energy pumping in damped coupled oscillators’, Journal of Vibration and Acoustics 126, 2004, 235–244. · doi:10.1115/1.1687397
[16] Vakakis, A. F., Manevitch, L. I., Musienko, A. I., Kerschen, G., and Bergman, L. A., ’Transient dynamics of a dispersive elastic wave guide weakly coupled to an essentially nonlinear end attachment’, Wave Motion 41, 2005, 109–132. · Zbl 1189.74068 · doi:10.1016/j.wavemoti.2004.06.002
[17] McFarland, D. M., Bergman, L. A., and Vakakis, A. F., ’Experimental study of nonlinear energy pumping occurring at a single fast frequency’, International Journal of Non-Linear Mechanics 40, 2005, 891–899. · Zbl 1349.74011 · doi:10.1016/j.ijnonlinmec.2004.11.001
[18] Manevitch, L.I., ’Complex representation of dynamics of coupled oscillators’, in Mathematical Models of Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 269–300.
[19] Jiang, X., McFarland, D. M., Bergman, L. A., and Vakakis, A. F., ’Steady state passive nonlinear energy pumping in coupled oscillators: Theoretical and experimental results’, Nonlinear Dynamics 33, 2003, 87–102. · Zbl 1039.70506 · doi:10.1023/A:1025599211712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.