×

Bricks for the mixed high-order virtual element method: projectors and differential operators. (English) Zbl 1437.65184

Summary: We present the essential tools to deal with virtual element method (VEM) for the approximation of solutions of partial differential equations in mixed form. Functional spaces, degrees of freedom, projectors and differential operators are described emphasizing how to build them in a virtual element framework and for a general approximation order. To achieve this goal, it was necessary to make a deep analysis on polynomial spaces and decompositions. We exploit such “bricks” to construct virtual element approximations of Stokes, Darcy and Navier-Stokes problems and we provide a series of examples to numerically verify the theoretical behaviour of high-order VEM.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
76S05 Flows in porous media; filtration; seepage

References:

[1] Agosti, A.; Formaggia, L.; Scotti, A., Analysis of a model for precipitation and dissolution coupled with a Darcy flux, J. Math. Anal. Appl., 431, 2, 752-781 (2015) · Zbl 1328.92092
[2] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 3, 376-391 (2013) · Zbl 1347.65172
[3] Antonietti, P. F.; Beirão da Veiga, L.; Mora, D.; Verani, M., A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 52, 1, 386-404 (2014) · Zbl 1427.76198
[4] Antonietti, P. F.; Bruggi, M.; Scacchi, S.; Verani, M., On the virtual element method for topology optimization on polygonal meshes: a numerical study, Comput. Math. Appl., 74, 5, 1091-1109 (2017) · Zbl 1391.74205
[5] Arbogast, T.; Obeyesekere, M.; Wheeler, M. F., Numerical methods for the simulation of flow in root-soil systems, SIAM J. Numer. Anal., 30, 6, 1677-1702 (1993) · Zbl 0792.76103
[6] Artioli, E.; De Miranda, S.; Lovadina, C.; Patruno, L., A stress/displacement Virtual Element method for plane elasticity problems, Comput. Methods Appl. Mech. Eng., 325, 155-174 (2017) · Zbl 1439.74040
[7] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[8] Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A., Lowest order virtual element approximation of magnetostatic problems, Comput. Methods Appl. Mech. Eng., 332, 343-362 (2018) · Zbl 1440.65181
[9] Beirão Da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A., Serendipity virtual elements for general elliptic equations in three dimensions, Chin. Ann. Math., Ser. B, 39, 2, 315-334 (2018) · Zbl 1448.65214
[10] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[11] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 8, 1541-1573 (2014) · Zbl 1291.65336
[12] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM Math. Model. Numer. Anal., 50, 3, 727-747 (2016) · Zbl 1343.65134
[13] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., \(H(\text{div})\) and \(H( \mathbf{curl})\)-conforming virtual element methods, Numer. Math., 133, 2, 303-332 (2016) · Zbl 1343.65133
[14] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Serendipity nodal VEM spaces, Comput. Fluids, 141, 2-12 (2016) · Zbl 1390.76292
[15] Beirão da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 5, 1110-1122 (2017) · Zbl 1448.65215
[16] Beirão da Veiga, L.; Lovadina, C.; Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27, 13, 2557-2594 (2017) · Zbl 1378.65171
[17] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51, 2, 509-535 (2017) · Zbl 1398.76094
[18] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 56, 3, 1210-1242 (2018) · Zbl 1397.65302
[19] Beirão da Veiga, L.; Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the acoustic vibration problem, Numer. Math., 136, 3, 725-763 (2017) · Zbl 1397.76059
[20] Beirão da Veiga, L.; Mora, D.; Vacca, G., The Stokes complex for virtual elements with application to Navier-Stokes flows (2018), arXiv preprint · Zbl 1446.65185
[21] Beirão da Veiga, L.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM Math. Model. Numer. Anal. (2018) · Zbl 1426.65163
[22] Berardi, M.; Andrisani, A.; Lopez, L.; Vurro, M., A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: an application to Richards’ equation, Comput. Phys. Commun., 208, 43-53 (2016) · Zbl 1375.93134
[23] Berardi, M.; Difonzo, F.; Notarnicola, F.; Vurro, M., A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135, 264-275 (2019) · Zbl 1406.65078
[24] Berrone, S.; Borio, A., Orthogonal polynomials in badly shaped polygonal elements for the virtual element method, Finite Elem. Anal. Des., 129, 14-31 (2017)
[25] Bertoluzza, S.; Pennacchio, M.; Prada, D., BDDC and FETI-DP for the virtual element method, Calcolo, 54, 4, 1565-1593 (2017) · Zbl 1429.65274
[26] Botti, L.; Di Pietro, D. A.; Droniou, J., A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits, Comput. Methods Appl. Mech. Eng., 341, 278-310 (2018) · Zbl 1440.76052
[27] Brenner, S. C.; Sung, L., Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci., 28, 7, 1291-1336 (2018) · Zbl 1393.65049
[28] Brezzi, F.; Falk, R. S.; Marini, L. D., Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48, 4, 1227-1240 (2014) · Zbl 1299.76130
[29] Cáceres, E.; Gatica, G. N.; Sequeira, F. A., A mixed virtual element method for quasi-Newtonian Stokes flows, SIAM J. Numer. Anal., 56, 1, 317-343 (2018) · Zbl 1380.76033
[30] Cangiani, A.; Gyrya, V.; Manzini, G., The nonconforming virtual element method for the Stokes equations, SIAM J. Numer. Anal., 54, 6, 3411-3435 (2016) · Zbl 1426.76230
[31] Cao, S.; Chen, L., Anisotropic error estimates of the linear virtual element method on polygonal meshes, SIAM J. Numer. Anal., 56, 5, 2913-2939 (2018) · Zbl 1401.65129
[32] Certík, O.; Gardini, F.; Manzini, G.; Vacca, G., The virtual element method for eigenvalue problems with potential terms on polytopic meshes, Appl. Math., 63, 3, 333-365 (2018) · Zbl 1488.65196
[33] Chen, L.; Wang, F., A divergence free weak virtual element method for the Stokes problem on polytopal meshes, J. Sci. Comput. (2018)
[34] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Eng., 318, 148-192 (2017) · Zbl 1439.74397
[35] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM), Comput. Methods Appl. Mech. Eng., 347, 21-58 (2019) · Zbl 1440.65194
[36] Cockburn, B.; Fu, G.; Qiu, W., A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions, IMA J. Numer. Anal., 37, 2, 730-749 (2017) · Zbl 1433.76077
[37] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 251, 1067-1095 (2005) · Zbl 1069.76029
[38] Dassi, F.; Mascotto, L., Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl., 75, 9, 3379-3401 (2018) · Zbl 1409.65090
[39] Dassi, F.; Scacchi, S., Parallel solvers for virtual element discretizations of elliptic equations in mixed form, arXiv preprint · Zbl 1506.65204
[40] Di Pietro, D. A.; Krell, S., A hybrid high-order method for the steady incompressible Navier-Stokes problem, J. Sci. Comput., 74, 3, 1677-1705 (2018) · Zbl 1384.76037
[41] Gatica, G. N.; Munar, M.; Sequeira, F. A., A mixed virtual element method for a nonlinear Brinkman model of porous media flow, Calcolo, 55, 2 (2018), Art. 21, 36 · Zbl 1391.76330
[42] Gopalakrishnan, J.; Lederer, P. L.; Schöberl, J., A mass conserving mixed stress formulation for the Stokes equations (2018), arXiv preprint
[43] John, V.; Linke, A.; Merdon, C.; Neilan, M.; Rebholz, L. G., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59, 3, 492-544 (2017) · Zbl 1426.76275
[44] Linke, A.; Merdon, C., On velocity errors due to irrotational forces in the Navier-Stokes momentum balance, J. Comput. Phys., 313, 654-661 (2016) · Zbl 1349.65627
[45] Lipnikov, K.; Vassilev, D.; Yotov, I., Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids, Numer. Math., 126, 2, 321-360 (2014) · Zbl 1282.76139
[46] Liu, X.; Li, J.; Chen, Z., A nonconforming virtual element method for the Stokes problem on general meshes, Comput. Methods Appl. Mech. Eng., 320, 694-711 (2017) · Zbl 1439.76085
[47] Manzini, G.; Ferraris, S., Mass-conservative finite volume methods on 2-D unstructured grids for the Richards’ equation, Adv. Water Resour., 27, 12, 1199-1215 (2004)
[48] Mascotto, L., Ill-conditioning in the virtual element method: stabilizations and bases, Numer. Methods Partial Differ. Equ., 34, 4, 1258-1281 (2018) · Zbl 1407.65294
[49] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23 (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0803.65088
[50] Russo, A., On the choice of the internal degrees of freedom for the nodal virtual element method in two dimensions, Comput. Math. Appl., 72, 8, 1968-1976 (2016) · Zbl 1359.65266
[51] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Int. J. Numer. Methods Eng., 61, 12, 2045-2066 (2004) · Zbl 1073.65563
[52] Vacca, G., An \(H^1\)-conforming virtual element for Darcy and Brinkman equations, Math. Models Methods Appl. Sci., 28, 1, 159-194 (2018) · Zbl 1457.65218
[53] Wriggers, P.; Reddy, B. D.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60, 2, 253-268 (2017) · Zbl 1386.74146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.