×

Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. (English) Zbl 1437.35295

Summary: We study the existence and multiplicity of semiclassical states for the Choquard equation with critical growth
\[-\varepsilon^2\varDelta u+V(x)u=\left(\int_{\mathbb{R}^N} \frac{G(y,u(y))}{|x-y|^\mu}dy\right)g(x,u)\quad\text{in }\mathbb{R}^N,\]
where \(N\geq 3\), \(0 < \mu < \min\{4,N\}\), \(V(x)\) is sign changing and \(G\) is the primitive of \(g\) which is of critical growth due to the well known Hardy-Littlewood-Sobolev inequality. Under suitable assumptions on \(V\) and \(g\), we prove the existence and multiplicity of semiclassical states by critical point theory.

MSC:

35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Ackermann, N., On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248, 423-443 (2004) · Zbl 1059.35037
[2] Alves, C. O.; Cassani, D.; Tarsi, C.; Yang, M., Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^2\), J. Differential Equations, 261, 1933-1972 (2016) · Zbl 1347.35096
[3] Alves, C. O.; Figueiredo, G. M.; Yang, M., Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Adv. Nonlinear Anal., 5, 331-345 (2016) · Zbl 1354.35029
[4] Alves, C. O.; Gao, F.; Squassina, M.; Yang, M., Singularly perturbed critical Choquard equations, J. Differential Equations, 263, 3943-3988 (2017) · Zbl 1378.35113
[5] Alves, C. O.; Nóbrega, A. B.; Yang, M., Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55, 28 (2016) · Zbl 1347.35097
[6] Alves, C. O.; Rădulescu, V. D.; Tavares, L., Generalized Choquard equations driven by nonhomogeneous operators, Mediterr. J. Math., 16, Article 20 pp. (2019), 24 pp. · Zbl 1411.35124
[7] Alves, C. O.; Yang, M., Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257, 4133-4164 (2014) · Zbl 1309.35036
[8] Alves, C. O.; Yang, M., Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. R. Soc. Edinburgh A, 146, 23-58 (2016) · Zbl 1366.35050
[9] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schödinger equations, Arch. Ration. Mech. Anal., 140, 285-300 (1997) · Zbl 0896.35042
[10] Ambrosetti, A.; Malchiodi, A.; Secchi, S., Multiplicity results for some nonlinear Schödinger equations with potentials, Arch. Ration. Mech. Anal., 159, 253-271 (2001) · Zbl 1040.35107
[11] Benci, V., On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274, 533-572 (1982) · Zbl 0504.58014
[12] Benci, V.; Cerami, G., Existence of positive solutions of the equation \(- \Delta u + a ( x ) u = u^{( N + 2 ) / ( N - 2 )}\) in \(\mathbb{R}^N\), J. Funct. Anal., 88, 90-117 (1990) · Zbl 0705.35042
[13] Bisci, G.; Rădulescu, V., Ground state solutions of scalar field fractional Schrodinger equations, Calc. Var. Partial Differential Equations, 54, 2985-3008 (2015) · Zbl 1330.35495
[14] Buffoni, B.; Jeanjean, L.; Stuart, C. A., Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc., 119, 179-186 (1993) · Zbl 0789.35052
[15] Byeon, J.; Wang, Z. Q., Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differential Equations, 18, 207-219 (2003) · Zbl 1073.35199
[16] Cao, D.; Peng, S., Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34, 1566-1591 (2009) · Zbl 1185.35248
[17] Cassani, D.; Zhang, J., Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8, 1184-1212 (2019) · Zbl 1418.35168
[18] Cingolani, S.; Clapp, M.; Secchi, S., Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63, 233-248 (2012) · Zbl 1247.35141
[19] Cingolani, S.; Secchi, S.; Squassina, M., Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. R. Soc. Edinburgh A, 140, 973-1009 (2010) · Zbl 1215.35146
[20] Ding, Y., (Variational Methods for Strongly Indefinite Problems. Variational Methods for Strongly Indefinite Problems, Interdisciplinary Math. Sci, vol. 7 (2007), World Scientific Publ) · Zbl 1133.49001
[21] Ding, Y.; Lin, F., Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations, 30, 231-249 (2007) · Zbl 1206.35102
[22] Ding, Y.; Wei, J., Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials, J. Funct. Anal., 251, 546-572 (2007) · Zbl 1131.35075
[23] Du, L.; Yang, M., Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. A, 39, 10, 5847-5866 (2019) · Zbl 1425.35025
[24] F. Gao, E. Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proc. R. Soc. Edinburgh A, http://dx.doi.org/10.1017/prm.2018.131. · Zbl 1437.35213
[25] Gao, F.; Yang, M., On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61, 1219-1242 (2018) · Zbl 1397.35087
[26] Gao, F.; Yang, M., A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20, Article 1750037 pp. (2018), 22 pp · Zbl 1391.35126
[27] Gao, F.; Yang, M.; Santos, C. A.; Zhou, J., Infinitely many solutions for a class of critical Choquard equation, Topol. Methods Nonlinear Anal., 54, 219-232 (2019) · Zbl 1433.35035
[28] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21, 287-318 (2004) · Zbl 1060.35012
[29] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 93-105 (1976) · Zbl 0369.35022
[30] Lieb, E.; Loss, M., Analysis, Gradute Studies in Mathematics (2001), AMS: AMS Providence, Rhode island · Zbl 0966.26002
[31] Lions, P. L., The Choquard equation and related questions, Nonlinear Anal., 4, 1063-1072 (1980) · Zbl 0453.47042
[32] Ma, L.; Zhang, Z., Symmetry of positive solutions for Choquard equations with fractional p-Laplacian, Nonlinear Anal., 182, 248-262 (2019) · Zbl 1411.35273
[33] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260
[34] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 153-184 (2013) · Zbl 1285.35048
[35] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 6557-6579 (2015) · Zbl 1325.35052
[36] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17, Article 1550005 pp. (2015), 12 pp · Zbl 1326.35109
[37] Moroz, V.; Van Schaftingen, J., Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52, 199-235 (2015) · Zbl 1309.35029
[38] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 773-813 (2017) · Zbl 1360.35252
[39] Pekar, S., Untersuchung über Die Elektronentheorie Der Kristalle (1954), Akademie Verlag: Akademie Verlag Berlin · Zbl 0058.45503
[40] del Pino, M.; Felmer, P., Local Mountain Pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4, 121-137 (1996) · Zbl 0844.35032
[41] del Pino, M.; Felmer, P., Multipeak bound states of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 127-149 (1998) · Zbl 0901.35023
[42] Rabinowitz, P., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087
[43] Secchi, S., A note on Schrodinger-Newton systems with decaying electric potential, Nonlinear Anal., 72, 3842-3856 (2010) · Zbl 1187.35254
[44] Seok, J., Nonlinear Choquard equations: Doubly critical case, Appl. Math. Lett., 76, 148-156 (2018) · Zbl 1384.35032
[45] Seok, J., Limit profiles and uniqueness of ground states to the nonlinear Choquard equations, Adv. Nonlinear Anal., 8, 1083-1098 (2019) · Zbl 1419.35066
[46] Shen, Z.; Gao, F.; Yang, M., Groundstates for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 14, 4082-4098 (2016) · Zbl 1344.35168
[47] Shen, Z.; Gao, F.; Yang, M., On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A, 38, 7, 3669-3695 (2018)
[48] Van Schaftingen, J.; Xia, J., Standing waves with a critical frequency for nonlinear Choquard equations, Nonlinear Anal., 161, 87-107 (2017) · Zbl 1370.35032
[49] Wei, J.; Winter, M., Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50, Article 012905 pp. (2009) · Zbl 1189.81061
[50] Yang, M.; Ding, Y., Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part, Comm. Pure Appl. Anal., 12, 771-783 (2013) · Zbl 1270.35218
[51] Yang, M.; Zhang, J.; Zhang, Y., Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity, Comm. Pure Appl. Anal., 16, 493-512 (2017) · Zbl 1364.35027
[52] Zhang, J.; Chen, Z.; Zou, W., Standing Waves for nonlinear Schrödinger Equations involving critical growth, J. Lond. Math. Soc., 90, 827-844 (2014) · Zbl 1317.35247
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.