×

On the universal realizability problem. (English) Zbl 1437.15025

A multi-set \(\Lambda = \{\lambda_1, \lambda_2,\dots, \lambda_n\}\) of complex numbers is said to be realizable if it is the spectrum of a (entrywise) nonnegative matrix A. The problem of finding necessary and sufficient conditions for \(\Lambda\) being realizable is known as the nonnegative inverse eigenvalue problem (NIEP). It is known as the real nonnegative inverse eigenvalue problem (RNIEP) if all \(\lambda\)’s are required to be real and as the symmetric nonnegative inverse eigenvalue problem (SNIEP) if \(A\) is required real. These problems have been extensively studied in the literature.
\(\Lambda\) is universally realizable (UR) if \(\Lambda\) is realizable for each possible Jordan canonical form allowed by \(\Lambda\), a notion due to C. R. Johnson et al. [Linear Algebra Appl. 587, 302–313 (2020; Zbl 1475.15012)]. Obviously, this imposes more restrictions. For example, in the case of complex conjugate eigenvalues, this means that any Jordan block must occur in conjugate pairs.
The authors give a general realizability criterion, based on the use of normal ODP matrices, which are nonnegative matrices with positive off-diagonal entries. Such criterion gives rise to another specific criterion for a real \(\Lambda\). An additional realizability criterion is obtained. In particular, they show that Soto-\(p\) realizable implies UR and some realizability criteria for RNIEP and SNIEP are realizability criteria for URP as well. Examples are given to illustrate the results.
Reviewer: Tin Yau Tam (Reno)

MSC:

15A29 Inverse problems in linear algebra
15A20 Diagonalization, Jordan forms
15A18 Eigenvalues, singular values, and eigenvectors
15A21 Canonical forms, reductions, classification

Citations:

Zbl 1475.15012
Full Text: DOI

References:

[1] Borobia, A., On the nonnegative eigenvalue problem, Linear Algebra Appl., 223/224, 131-140 (1995) · Zbl 0831.15014
[2] Borobia, A.; Moro, J.; Soto, R. L., Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 393, 73-89 (2004) · Zbl 1079.15503
[3] Borobia, A.; Moro, J.; Soto, R. L., A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem, Linear Algebra Appl., 428, 2574-2584 (2008) · Zbl 1145.15006
[4] Brauer, A., Limits for the characteristic roots of a matrix IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91 (1952) · Zbl 0046.01202
[5] Collao, M.; Salas, M.; Soto, R. L., Spectra universally realizable by doubly stochastic matrices, Spec. Matrices, 6, 301-309 (2018) · Zbl 1404.15027
[6] Díaz, R. C.; Soto, R. L., Nonnegative inverse elementary divisors problem in the left half plane, Linear Multilinear Algebra, 64, 258-268 (2016) · Zbl 1337.15015
[7] Ellard, R.; Šmigoc, H., Connecting sufficient conditions for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl., 498, 521-552 (2016) · Zbl 1334.15028
[8] Fiedler, M., Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl., 9, 119-142 (1974) · Zbl 0322.15015
[9] Johnson, C. R.; Julio, A. I.; Soto, R. L., Nonnegative realizability with Jordan structure, Linear Algebra Appl., 587, 302-313 (2020) · Zbl 1475.15012
[10] Julio, A. I.; Manzaneda, C. B.; Soto, R. L., Normal nonnegative realization of spectra, Linear Multilinear Algebra, 63, 1204-1215 (2015) · Zbl 1312.15019
[11] A.I. Julio, C. Marijuán, M. Pisonero, R.L. Soto, Universal realizability in low dimension, preprint. · Zbl 1473.15016
[12] Kellogg, R., Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl., 4, 191-204 (1971) · Zbl 0215.37504
[13] Laffey, T. J.; Šmigoc, H., Nonnegative realization of spectra having negative real parts, Linear Algebra Appl., 416, 148-159 (2006) · Zbl 1103.15005
[14] Marijuán, C.; Pisonero, M.; Soto, R. L., A map of sufficient conditions for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl., 530, 344-365 (2017) · Zbl 1368.15016
[15] Minc, H., Inverse elementary divisor problem for nonnegative matrices, Proc. Am. Math. Soc., 83, 4, 665-669 (1981) · Zbl 0472.15006
[16] Perfect, H., Methods of constructing certain stochastic matrices II, Duke Math. J., 22, 305-311 (1955) · Zbl 0068.32704
[17] Radwan, N., An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra Appl., 248, 101-109 (1996) · Zbl 0865.15008
[18] Rojo, O.; Soto, R. L., Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra Appl., 368, 53-69 (2003) · Zbl 1031.15017
[19] Soto, R. L., Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl., 369, 169-184 (2003) · Zbl 1031.15018
[20] Soto, R. L., Realizability criterion for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl., 416, 783-794 (2006) · Zbl 1097.15013
[21] Soto, R. L.; Rojo, O.; Moro, J.; Borobia, A., Symmetric nonnegative realization of spectra, Electron. J. Linear Algebra, 16, 1-18 (2007) · Zbl 1155.15010
[22] Soto, R. L.; Ccapa, J., Nonnegative matrices with prescribed elementary divisors, Electron. J. Linear Algebra, 17, 287-303 (2008) · Zbl 1149.15009
[23] Soto, R. L.; Díaz, R. C.; Nina, H.; Salas, M., Nonnegative matrices with prescribed spectrum and elementary divisors, Linear Algebra Appl., 439, 3591-3604 (2013) · Zbl 1283.15048
[24] Soto, R. L., A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem, Numer. Linear Algebra Appl., 20, 336-348 (2013) · Zbl 1289.15052
[25] Soules, G., Constructing symmetric nonnegative matrices, Linear Multilinear Algebra, 13, 241-251 (1983) · Zbl 0516.15013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.