×

Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting. (English) Zbl 1176.35071

Summary: We study the boundary value problem \[ -\text{div}(\log(1+|\nabla u|^q)|\nabla u|^{p-2}\nabla u)=f(u)\;\text{in}\;\Omega,\quad u=0\;\text{on}\;\partial\Omega, \] where \(\Omega\) is a bounded domain in \(\mathbb R^N\) with smooth boundary. We distinguish the cases where either \(f(u)=-\lambda |u|^{p-2}u+|u|^{r-2}u\) or \(f(u)=\lambda |u|^p-2u-|u|^{r-2}u\), with \(p, q>1\), \(p+q<\min\{N,r\}\), and \(r<(Np-N+p)/(N-p)\). In the first case we show the existence of infinitely many weak solutions for any \(\lambda>0\). In the second case we prove the existence of a nontrivial weak solution if \(\lambda\) is sufficiently large. Our approach relies on adequate variational methods in Orlicz-Sobolev spaces.

MSC:

35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Acerbi, E.; Mingione, G., Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math., 584, 117-148 (2005) · Zbl 1093.76003
[2] Adams, R., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[3] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[4] Benci, V.; Fortunato, D., Discreteness conditions of the spectrum of Schrödinger operators, J. Math. Anal. Appl., 64, 695-700 (1978) · Zbl 0389.35016
[5] Chabrowski, J.; Fu, Y., Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306, 604-618 (2005) · Zbl 1160.35399
[6] Chen, Y.; Levine, S.; Rao, R., Functionals with \(p(x)\)-growth in image processing, Duquesne University, Department of Mathematics and Computer Science Technical Report 2004-01, available at
[7] Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var., 11, 33-62 (2000) · Zbl 0959.35057
[8] Clément, Ph.; de Pagter, B.; Sweers, G.; de Thélin, F., Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, 241-267 (2004) · Zbl 1167.35352
[9] G. Dankert, Sobolev embedding theorems in Orlicz spaces, PhD thesis, University of Köln, 1966; G. Dankert, Sobolev embedding theorems in Orlicz spaces, PhD thesis, University of Köln, 1966
[10] Donaldson, T. K., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations, 10, 507-528 (1971) · Zbl 0207.41501
[11] Donaldson, T. K.; Trudinger, N. S., Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8, 52-75 (1971) · Zbl 0216.15702
[12] Fan, X., Solutions for \(p(x)\)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312, 464-477 (2005) · Zbl 1154.35336
[13] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 306-317 (2005) · Zbl 1072.35138
[14] García-Huidobro, M.; Le, V. K.; Manásevich, R.; Schmitt, K., On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differential Equations Appl., 6, 207-225 (1999) · Zbl 0936.35067
[15] Gossez, J. P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190, 163-205 (1974) · Zbl 0239.35045
[16] Gossez, J. P., A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, (Proc. Sympos. Pure Math., vol. 45 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 455-462 · Zbl 0602.35037
[17] Le, V. K.; Schmitt, K., Quasilinear elliptic equations and inequalities with rapidly growing coefficients, J. London Math. Soc., 62, 852-872 (2000) · Zbl 1013.35032
[18] W. Luxemburg, Banach function spaces, PhD thesis, Technische Hogeschool te Delft, The Netherlands, 1955; W. Luxemburg, Banach function spaces, PhD thesis, Technische Hogeschool te Delft, The Netherlands, 1955 · Zbl 0068.09204
[19] Krasnosel’skii, M. A.; Rutickii, Ya. B., Convex Functions and Orlicz Spaces (1961), Noordhoff: Noordhoff Gröningen · Zbl 0095.09103
[20] Kufner, A.; John, O.; Fučik, S., Function Spaces (1997), Noordhoff: Noordhoff Leyden
[21] Mih&abreve;ilescu, M.; R&abreve;dulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A, 462, 2625-2641 (2006) · Zbl 1149.76692
[22] O’Neill, R., Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., 115, 300-328 (1965) · Zbl 0132.09201
[23] Rabinowitz, P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. (1984), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[24] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, vol. IV, Analysis of Operators (1978), Academic Press: Academic Press New York · Zbl 0401.47001
[25] Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Springer: Springer Berlin · Zbl 0968.76531
[26] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1996), Springer: Springer Heidelberg · Zbl 0864.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.