×

The Lie symmetry group of the general Liénard-type equation. (English) Zbl 1436.34030

Summary: We consider the general Liénard-type equation \(\ddot{u}=\sum_{k=0}^n f_k\dot{u}^k\) for \(n\geq4\). This equation naturally admits the Lie symmetry \(\frac{\partial}{\partial t}\). We completely characterize when this equation admits another Lie symmetry, and give an easily verifiable condition for this on the functions \(f_0,\dots, f_n\). Moreover, we give an equivalent characterization of this condition. Similar results have already been obtained previously in the cases \(n = 1\) or \(n = 2\). That is, this paper handles all remaining cases except for \(n = 3\).

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34A26 Geometric methods in ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

References:

[1] Mickens, R. E., An Introduction to Nonlinear Oscillations, 224 (1981), Cambridge etc.: Cambridge University Press, Cambridge etc. · Zbl 0459.34002
[2] Levinson, N., On the existence of periodic solutions for second order differential equations with a forcing term, J. Math. Phys., Mass. Inst. Techn, 22, 41-48 (1943) · Zbl 0061.18909
[3] Levinson, N.; Smith, O. K., A general equation for relaxation oscillations, Duke Math. J, 9, 382-403 (1942) · Zbl 0061.18908 · doi:10.1215/S0012-7094-42-00928-1
[4] Strutt, J. W., The Theory of Sound, New York: Dover Publications, New York · JFM 05.0535.01
[5] Polyanin, A. D.; Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations (2003), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1015.34001
[6] van der Pol, B., On relaxation-oscillations, The Lond, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 978-992 (1927) · JFM 52.0450.05 · doi:10.1080/14786442608564127
[7] van der Pol, B.; van der Mark, J., The heartbeat considered as a relaxation oscillation, and an electrical model of the heart, The Lond, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6, 763-775 (1928) · doi:10.1080/14786441108564652
[8] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys J, 1, 6, 445-466 (1961) · doi:10.1016/S0006-3495(61)86902-6
[9] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070 (1962) · doi:10.1109/JRPROC.1962.288235
[10] Jones, D. S.; Plank, M.; Sleeman, B. D., Differential Equations and Mathematical Biology (2009), Chapman and Hall/CRC · Zbl 1298.92003
[11] Nucci, M. C.; Sanchini, G., Lagrangians and Conservation Laws of an Easter Island Population Model, Symmetry, 7, 3, 1613-1632 (2015) · Zbl 1375.37148 · doi:10.3390/sym7031613
[12] Faria, J.R., Cuestas, J.C. and Gil-Alana, L.A., Unemployment and entrepreneurship: a cyclical relation? (Discussion papers. Nottingham Trent University, Bottingham Business School, Economics Division, 2008/2). · Zbl 1179.91146
[13] Goodwin, R. M.; Feinstein, C. H., A growth cycle, Socialism, Capitalism and Economic Growth, 54-58 (1975), Cambridge University Press: Cambridge University Press, Cambridge
[14] Kaldor, N., A model of the trade cycle, The Economic Journal, 50, 197, 78-92 (1940) · doi:10.2307/2225740
[15] Kalecki, M., A theory of the business cycle, The Review of Economic Studies, 4, 2, 77-97 (1937) · doi:10.2307/2967606
[16] Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khorꞌkova, N.G., Krasilꞌshchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M. and Vinogradov, A.M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, Vol. 182 (American Mathematical Society, Providence, RI, 1999). Edited and with a preface by Krasilꞌshchik and Vinogradov, Translated from the 1997 Russian original by Verbovetsky [A. M. Verbovetskiĭ] and Krasil shchik.
[17] Olver, P. J., Applications of Lie Groups to Differential Equations, 107 (1993), Springer-Verlag: Springer-Verlag, New York · Zbl 0785.58003
[18] Edwards, M.; Nucci, M. C., Application of Lie group analysis to a core group model for sexually transmitted diseases, J. Nonlinear Math. Phys, 13, 2, 211-230 (2006) · Zbl 1117.34040 · doi:10.2991/jnmp.2006.13.2.6
[19] Nucci, M. C., The role of symmetries in solving differential equations, Mathl. Comput. Modelling, 25, 8-9, 181-193 (1997) · Zbl 0884.76075 · doi:10.1016/S0895-7177(97)00068-X
[20] Nucci, M. C.; Leach, P. G. L., Singularity and symmetry analyses of mathematical models of epidemics, South African Journal of Science, 105, 136-146 (2009)
[21] Pandey, S. N.; Bindu, P. S.; Senthilvelan, M.; Lakshmanan, M., A group theoretical identification of integrable cases of the Liénard-type equation ẍ + f (x)ẋ + g(x) = 0. I: Equations having nonmaximal number of Lie point symmetries, J. Math. Phys, 50, 8, 082702 (2009) · Zbl 1328.34031 · doi:10.1063/1.3187783
[22] Pandey, S. N.; Bindu, P. S.; Senthilvelan, M.; Lakshmanan, M., A group theoretical identification of integrable equations in the Liénard-type equation ẍ + f (x)ẋ + g(x) = 0. II: Equations having maximal Lie point symmetries, J. Math. Phys, 50, 10, 102701 (2009) · Zbl 1283.34036 · doi:10.1063/1.3204075
[23] Tiwari, A. K.; Pandey, S. N.; Senthilvelan, M.; Lakshmanan, M., Classification of Lie point symmetries for quadratic Liénard type equation ẍ + f (x)ẋ^2 + g(x) = 0, J. Math. Phys, 54, 5, 053506 (2013) · Zbl 1295.34049 · doi:10.1063/1.4803455
[24] Tiwari, A. K.; Pandey, S. N.; Senthilvelan, M.; Lakshmanan, M., Erratum: “Classification of Lie point symmetries for quadratic Liénard type equation ẍ + f (x)ẋ^2 + g(x) = 0”, J. Math. Phys, 55, 5, 059901 (2014) · Zbl 1318.34052 · doi:10.1063/1.4871778
[25] Tiwari, A. K.; Pandey, S. N.; Senthilvelan, M.; Lakshmanan, M., Lie point symmetries classification of the mixed Liénard-type equation, Nonlinear Dynamics, 82, 4, 1953-1968 (2015) · Zbl 1437.34039 · doi:10.1007/s11071-015-2290-z
[26] Paliathanasis, A.; Leach, P. G.L., Comment on “Classification of Lie point symmetries for quadratic Liénard type equation ẍ + f (x)ẋ^2 + g(x) = 0” [J. Math. Phys. 54, 053506 (2013)] and its erratum [J. Math. Phys. 55, 059901 (2014)], J. Math. Phys., 57, 2 (2016) · Zbl 1337.34041 · doi:10.1063/1.4940692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.