×

Classification of Lie point symmetries for quadratic Liénard type equation \(\ddot{x}+f(x)\dot{x}^2+g(x)=0\). (English) Zbl 1295.34049

J. Math. Phys. 54, No. 5, 053506, 19 p. (2013); erratum ibid. 55, No. 5, 059901, 2 p. (2014).
The authors carry out a classification of the Lie point symmetry groups associated with the quadratic Liénard type equation \[ \ddot{x}+f(x)\dot{x}^2+g(x) = 0, \eqno{(1)} \] where \(f(x)\) and \(g(x)\) are arbitrary functions of \(x\). The symmetries are divided into two cases, (i) the maximal (eight parameter) symmetry group and (ii) non-maximal (three, two, and one parameter) symmetry groups.
Firstly, the authors consider the linearizable case and find the general form of equation (1) for which it admits eight point symmetry generators. The general form of equation (1) in this case is given by \[ \ddot{x} + f(x) \dot{x}^2 + g_1 e^{-\int f(x) d x} \int e^{\int f(x) dx}dx + g_2 e^{-\int f(x)dx} = 0, \eqno{(2)} \] where \(g_1\) and \(g_2\) are constant parameters.
Secondly, the authors consider the integrable cases of equation (1) with lesser parameter symmetries. The general forms of equations that show three and two parameters symmetry generators, respectively, are given by: \[ \ddot{x} + f(x)\dot{x}^2 + g_1 e^{-\int f(x)dx}\left(\lambda_1 + \int e^{\int f(x) d x} d x\right)^{-3} = 0,\eqno{(3)} \]
\[ \ddot{x}+f(x)\dot{x}^2+g_1e^{-\int f(x) d x} \left(\lambda_1 + \int e^{\int f(x) d x}dx\right)^{1-\lambda_2} = 0,\quad \lambda_2 \not=1,4, \eqno{(4)} \] where \(g_1, \lambda_1\), and \(\lambda_2\) are constants.
The rest of the cases of equation (1) with a Lie point symmetry group corresponds to a one parameter Lie point symmetry group. This case includes the one-dimensional Mathews-Lakshmanan oscillator with \(f(x)=-{\lambda x \over 1+\lambda x^2}\) and \(g(x) = {\omega_0^2 x \over 1+\lambda x^2}\).
This paper also analyzes the underlying equivalence transformations.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

References:

[1] Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations (1999) · Zbl 1047.34001
[2] Baumann, G., Symmetry Analysis of Differential Equations with Mathematica (1998) · Zbl 0898.34003
[3] Bluman, G. W.; Anco, S. C., Symmetry and Integration Methods for Differential Equations (2002) · Zbl 1013.34004
[4] Hydon, P., Symmetry Methods for Differential Equations: A Beginner’s Guide (2000) · Zbl 0951.34001
[5] Hill, J. M., Differential Equations and Group Methods for Scientists and Engineers (1999)
[6] Cantwell, B. J., Introduction to Symmetry Analysis (2000)
[7] Euler, N.; Steeb, W. H., Continuous Symmetries, Lie Algebras, and Differential Equations (1993) · Zbl 0790.34015
[8] Olver, P. J., Applications of Lie Groups to Differential Equations (1986) · Zbl 0588.22001
[9] Stephani, H., Differential Equations: Their Solutions Using Symmetries (1989) · Zbl 0704.34001
[10] Lakshmanan, M.; Rajasekar, S., Nonlinear Dynamics: Integrability, Chaos, and Patterns (2003) · Zbl 1038.37001
[11] Mahomed, F. M., Math. Methods Appl. Sci., 30, 1995 (2007) · Zbl 1135.34029 · doi:10.1002/mma.934
[12] 12.S. N.Pandey, P. S.Bindu, M.Senthilvelan, and M.Lakshmanan, J. Math. Phys.50, 082702 (2009);10.1063/1.3187783S. N.Pandey, P. S.Bindu, M.Senthilvelan, and M.Lakshmanan, J. Math. Phys.50, 102701 (2009).10.1063/1.3204075 · Zbl 1283.34036
[13] Mahomed, F. M.; Leach, P. G. L., J. Math. Phys., 30, 2770 (1989) · Zbl 0724.34003 · doi:10.1063/1.528511
[14] Leach, P. G. L., J. Math. Phys., 22, 679 (1981) · Zbl 0476.70016 · doi:10.1063/1.524976
[15] Leach, P. G. L.; Gorringe, V. M., J. Phys. A, 23, 2765 (1990) · Zbl 0708.70008 · doi:10.1088/0305-4470/23/13/015
[16] Govinder, K. S.; Leach, P. G. L., J. Phys. A, 27, 4153 (1994) · Zbl 0830.34002 · doi:10.1088/0305-4470/27/12/020
[17] Gat, O., J. Math. Phys., 33, 2966 (1992) · Zbl 0777.34011 · doi:10.1063/1.529566
[18] Bruzon, M. S.; Gandarias, M. L.; Senthilvelan, M., Phys. Lett. A, 375, 2985 (2011) · Zbl 1250.34030 · doi:10.1016/j.physleta.2011.06.036
[19] Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., J. Phys. A, 44, 445201 (2011) · Zbl 1236.34044 · doi:10.1088/1751-8113/44/44/445201
[20] 20.C.Muriel and J. L.Romero, IMA J. Appl. Math.66, 111 (2001);10.1093/imamat/66.2.111C.Muriel and J. L.Romero, J. Lie Theory13, 167 (2003); C.Muriel and J. L.Romero, J. Phys. A: Math. Theor.42, 365207 (2009).10.1088/1751-8113/42/36/365207 · Zbl 1184.34009
[21] Chouikha, A. R., J. Math. Anal. Appl., 331, 358 (2007) · Zbl 1125.34020 · doi:10.1016/j.jmaa.2006.08.061
[22] Sabatini, M., J. Differ. Equations, 196, 151 (2004) · Zbl 1048.34068 · doi:10.1016/S0022-0396(03)00067-6
[23] Boussaada, I.; Chouikha, A. R.; Strelcyn, J. M., Bull. Sci. Math., 135, 89 (2011) · Zbl 1220.34047 · doi:10.1016/j.bulsci.2010.01.004
[24] Bardet, M.; Boussaada, I.; Chouikha, A. R.; Strelcyn, J. M., Bull. Sci. Math., 135, 230 (2011) · Zbl 1221.34076 · doi:10.1016/j.bulsci.2010.12.003
[25] Mathews, P. M.; Lakshmanan, M., Q. Appl. Math., 32, 215 (1974) · Zbl 0284.34046
[26] Cariñena, J. F.; Rañada, M. F.; Santander, M.; Senthilvelan, M., Nonlinearity, 17, 1941 (2004) · Zbl 1068.37038 · doi:10.1088/0951-7715/17/5/019
[27] Cariñena, J. F.; Rañada, M. F.; Santander, M., Rep. Math. Phys., 54, 285 (2004) · Zbl 1161.81344 · doi:10.1016/S0034-4877(04)80020-X
[28] Goldstein, H., Classical Mechanics (2001)
[29] Venkatesan, A.; Lakshmanan, M., Phys. Rev. E, 55, 5134 (1997) · doi:10.1103/PhysRevE.55.5134
[30] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979) · Zbl 0418.70001
[31] Bhuvaneswari, A.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., J. Math. Phys., 53, 073504 (2012) · Zbl 1276.81050 · doi:10.1063/1.4731238
[32] Calogero, F., Isochronous Systems (2008) · Zbl 1153.37008
[33] Ovsyannikov, L. V., J. Appl. Mech. Tech. Phys., 45, 153 (2004) · Zbl 1057.34024 · doi:10.1023/B:JAMT.0000017576.56850.8d
[34] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists (1954) · Zbl 0055.11905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.