×

Cosmological relaxation from dark fermion production. (English) Zbl 1435.85011

Summary: We consider the cosmological relaxation solution to the electroweak hierarchy problem using the fermion production as a dominant friction force. In our approach, neither super-Planckian field excursions nor a large number of e-folds arise, and scanning over thermal Higgs mass squared is avoided. The produced fermions from the relaxion source through the derivative coupling are SM-singlets, what we call dark fermions, and they can serve as the keV scale warm dark matter candidates.

MSC:

85A40 Astrophysical cosmology
83C56 Dark matter and dark energy
81V74 Fermionic systems in quantum theory

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett.64B (1976) 159 [INSPIRE].
[4] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett.69B (1977) 489 [INSPIRE].
[5] P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the Goldstino Couplings and the Neutral Currents, Phys. Lett.84B (1979) 416 [INSPIRE].
[6] G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett.76B (1978) 575 [INSPIRE].
[7] D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett.136B (1984) 183 [INSPIRE].
[8] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett.136B (1984) 187 [INSPIRE].
[9] Georgi, Howard; Kaplan, David B.; Galison, Peter, Calculation of the composite Higgs mass, Physics Letters B, 143, 1-3, 152-154 (1984) · doi:10.1016/0370-2693(84)90823-2
[10] H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett.145B (1984) 216 [INSPIRE].
[11] Dugan, Michael J.; Georgi, Howard; Kaplan, David B., Anatomy of a composite Higgs model, Nuclear Physics B, 254, 299-326 (1985) · doi:10.1016/0550-3213(85)90221-4
[12] Contino, Roberto; Nomura, Yasunori; Pomarol, Alex, Higgs as a holographic pseudo-Goldstone boson, Nuclear Physics B, 671, 148-174 (2003) · Zbl 1058.81583 · doi:10.1016/j.nuclphysb.2003.08.027
[13] S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett.B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].
[14] A.G. Cohen, D.B. Kaplan and A.E. Nelson, The More minimal supersymmetric standard model, Phys. Lett.B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].
[15] M. Dine, Naturalness Under Stress, Ann. Rev. Nucl. Part. Sci.65 (2015) 43 [arXiv:1501.01035] [INSPIRE].
[16] P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
[17] J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs and G. Servant, Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale, Phys. Rev. Lett.115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].
[18] E. Hardy, Electroweak relaxation from finite temperature, JHEP11 (2015) 077 [arXiv:1507.07525] [INSPIRE]. · Zbl 1388.81825
[19] S.P. Patil and P. Schwaller, Relaxing the Electroweak Scale: the Role of Broken dS Symmetry, JHEP02 (2016) 077 [arXiv:1507.08649] [INSPIRE].
[20] O. Antipin and M. Redi, The Half-composite Two Higgs Doublet Model and the Relaxion, JHEP12 (2015) 031 [arXiv:1508.01112] [INSPIRE].
[21] J. Jaeckel, V.M. Mehta and L.T. Witkowski, Musings on cosmological relaxation and the hierarchy problem, Phys. Rev.D 93 (2016) 063522 [arXiv:1508.03321] [INSPIRE].
[22] R.S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the Relaxion an Axion?, JHEP02 (2016) 166 [arXiv:1509.00047] [INSPIRE].
[23] B. Batell, G.F. Giudice and M. McCullough, Natural Heavy Supersymmetry, JHEP12 (2015) 162 [arXiv:1509.00834] [INSPIRE]. · Zbl 1388.81765
[24] O. Matsedonskyi, Mirror Cosmological Relaxation of the Electroweak Scale, JHEP01 (2016) 063 [arXiv:1509.03583] [INSPIRE]. · Zbl 1388.83933
[25] L. Marzola and M. Raidal, Natural relaxation, Mod. Phys. Lett.A 31 (2016) 1650215 [arXiv:1510.00710] [INSPIRE]. · Zbl 1353.81114
[26] S. Di Chiara, K. Kannike, L. Marzola, A. Racioppi, M. Raidal and C. Spethmann, Relaxion Cosmology and the Price of Fine-Tuning, Phys. Rev.D 93 (2016) 103527 [arXiv:1511.02858] [INSPIRE].
[27] L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion Monodromy and the Weak Gravity Conjecture, JHEP04 (2016) 020 [arXiv:1512.00025] [INSPIRE]. · Zbl 1388.83923
[28] A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP12 (2016) 101 [arXiv:1607.01786] [INSPIRE].
[29] N. Fonseca, L. de Lima, C.S. Machado and R.D. Matheus, Large field excursions from a few site relaxion model, Phys. Rev.D 94 (2016) 015010 [arXiv:1601.07183] [INSPIRE].
[30] A. Fowlie, C. Balázs, G. White, L. Marzola and M. Raidal, Naturalness of the relaxion mechanism, JHEP08 (2016) 100 [arXiv:1602.03889] [INSPIRE].
[31] J.L. Evans, T. Gherghetta, N. Nagata and Z. Thomas, Naturalizing Supersymmetry with a Two-Field Relaxion Mechanism, JHEP09 (2016) 150 [arXiv:1602.04812] [INSPIRE]. · Zbl 1390.81591
[32] Kobayashi, Tatsuo; Seto, Osamu; Shimomura, Takashi; Urakawa, Yuko, Relaxion window, Modern Physics Letters A, 32, 27, 1750142 (2017) · Zbl 1372.83087 · doi:10.1142/S0217732317501425
[33] K. Choi and S.H. Im, Constraints on Relaxion Windows, JHEP12 (2016) 093 [arXiv:1610.00680] [INSPIRE].
[34] T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta and G. Perez, Phenomenology of relaxion-Higgs mixing, JHEP06 (2017) 050 [arXiv:1610.02025] [INSPIRE].
[35] L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway Relaxion Monodromy, JHEP02 (2018) 124 [arXiv:1610.05320] [INSPIRE]. · Zbl 1387.83087
[36] Z. Lalak and A. Markiewicz, Dynamical relaxation in 2HDM models, J. Phys.G 45 (2018) 035002 [arXiv:1612.09128] [INSPIRE].
[37] K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev.D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].
[38] J.L. Evans, T. Gherghetta, N. Nagata and M. Peloso, Low-scale D -term inflation and the relaxion mechanism, Phys. Rev.D 95 (2017) 115027 [arXiv:1704.03695] [INSPIRE].
[39] H. Beauchesne, E. Bertuzzo and G. Grilli di Cortona, Constraints on the relaxion mechanism with strongly interacting vector-fermions, JHEP08 (2017) 093 [arXiv:1705.06325] [INSPIRE].
[40] B. Batell, M.A. Fedderke and L.-T. Wang, Relaxation of the Composite Higgs Little Hierarchy, JHEP12 (2017) 139 [arXiv:1705.09666] [INSPIRE].
[41] A. Nelson and C. Prescod-WEinstein, Relaxion: A Landscape Without Anthropics, Phys. Rev.D 96 (2017) 113007 [arXiv:1708.00010] [INSPIRE].
[42] O. Davidi, R.S. Gupta, G. Perez, D. Redigolo and A. Shalit, Nelson-Barr relaxion, Phys. Rev.D 99 (2019) 035014 [arXiv:1711.00858] [INSPIRE].
[43] N. Fonseca, B. Von Harling, L. De Lima and C.S. Machado, A warped relaxion, JHEP07 (2018) 033 [arXiv:1712.07635] [INSPIRE].
[44] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of Relaxed Inflation, JHEP02 (2018) 084 [arXiv:1706.03072] [INSPIRE]. · Zbl 1387.83142
[45] M. Ibe, Y. Shoji and M. Suzuki, Fast-Rolling Relaxion, JHEP11 (2019) 140 [arXiv:1904.02545] [INSPIRE].
[46] R.S. Gupta, J.Y. Reiness and M. Spannowsky, All-in-one relaxion: A unified solution to five particle-physics puzzles, Phys. Rev.D 100 (2019) 055003 [arXiv:1902.08633] [INSPIRE].
[47] P.B. Greene and L. Kofman, Preheating of fermions, Phys. Lett.B 448 (1999) 6 [hep-ph/9807339] [INSPIRE].
[48] P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev.D 62 (2000) 123516 [hep-ph/0003018] [INSPIRE].
[49] L.D. Landau and E.M. Lifshits, Mechanics, in Course of Theoretical Physics, vol. 1, Butterworth-Heinemann, Oxford (1982) [ISBN: 9780750628969].
[50] M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev.D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].
[51] P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP11 (2015) 021 [arXiv:1508.00891] [INSPIRE].
[52] Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo, Phenomenology of fermion production during axion inflation, Journal of Cosmology and Astroparticle Physics, 2018, 6, 020-020 (2018) · Zbl 1527.83100 · doi:10.1088/1475-7516/2018/06/020
[53] N. Fonseca, E. Morgante and G. Servant, Higgs relaxation after inflation, JHEP10 (2018) 020 [arXiv:1805.04543] [INSPIRE]. · Zbl 1402.83115
[54] M. Son, F. Ye and T. You, Leptogenesis in Cosmological Relaxation with Particle Production, Phys. Rev.D 99 (2019) 095016 [arXiv:1804.06599] [INSPIRE].
[55] U. Min, M. Son and H.G. Suh, Group Theoretic Approach to Fermion Production, JHEP03 (2019) 072 [arXiv:1808.00939] [INSPIRE]. · Zbl 1414.85012
[56] P. Adshead, P. Ralegankar and J. Shelton, Reheating in two-sector cosmology, JHEP08 (2019) 151 [arXiv:1906.02755] [INSPIRE].
[57] A.R. Liddle and S.M. Leach, How long before the end of inflation were observable perturbations produced?, Phys. Rev.D 68 (2003) 103503 [astro-ph/0305263] [INSPIRE].
[58] T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett.105 (2010) 231302 [arXiv:1008.0603] [INSPIRE].
[59] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (1982) [INSPIRE]. · Zbl 0476.53017
[60] J.R. Bond, G. Efstathiou and J. Silk, Massive Neutrinos and the Large Scale Structure of the Universe, Phys. Rev. Lett.45 (1980) 1980 [INSPIRE].
[61] E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys.69 (1990) 1 [INSPIRE]. · Zbl 0984.83503
[62] V. Iršič et al., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev.D 96 (2017) 023522 [arXiv:1702.01764] [INSPIRE].
[63] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP05 (2009) 012 [arXiv:0812.0010] [INSPIRE].
[64] Baltz, Edward A.; Murayama, Hitoshi, Gravitino warm dark matter with entropy production, Journal of High Energy Physics, 2003, 5, 067-067 (2003) · doi:10.1088/1126-6708/2003/05/067
[65] P.B. Pal and L. Wolfenstein, Radiative Decays of Massive Neutrinos, Phys. Rev.D 25 (1982) 766 [INSPIRE].
[66] K. Abazajian, G.M. Fuller and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J.562 (2001) 593 [astro-ph/0106002] [INSPIRE].
[67] A.D. Dolgov, Neutrinos in cosmology, Phys. Rept.370 (2002) 333 [hep-ph/0202122] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.