×

Electroweak relaxation from finite temperature. (English) Zbl 1388.81825

Summary: We study theories which naturally select a vacuum with parametrically small Electroweak Scale due to finite temperature effects in the early universe. In particular, there is a scalar with an approximate shift symmetry broken by a technically natural small coupling to the Higgs, and a temperature dependent potential. As the temperature of the universe drops, the scalar follows the minimum of its potential altering the Higgs mass squared parameter. The scalar also has a periodic potential with amplitude proportional to the Higgs expectation value, which traps it in a vacuum with a small Electroweak Scale. The required temperature dependence of the potential can occur through strong coupling effects in a hidden sector that are suppressed at high temperatures. Alternatively, it can be generated perturbatively from a one-loop thermal potential. In both cases, for the scalar to be displaced, a hidden sector must be reheated to temperatures significantly higher than the visible sector. However this does not violate observational constraints provided the hidden sector energy density is transferred to the visible sector without disrupting big bang nucleosynthesis. We also study how the mechanism can be implemented when the visible sector is completed to the Minimal Supersymmetric Standard Model at a high scale. Models with a UV cutoff of 10 TeV and no fields taking values over a range greater than \(10^{12}\) GeV are possible, although the scalar must have a range of order \(10^{8}\) times the effective decay constant in the periodic part of its potential.

MSC:

81T60 Supersymmetric field theories in quantum mechanics

References:

[1] P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, arXiv:1504.07551 [INSPIRE].
[2] L.F. Abbott, A Mechanism for Reducing the Value of the Cosmological Constant, Phys. Lett.B 150 (1985) 427 [INSPIRE]. · doi:10.1016/0370-2693(85)90459-9
[3] S.A. Abel, C.-S. Chu, J. Jaeckel and V.V. Khoze, SUSY breaking by a metastable ground state: Why the early universe preferred the non-supersymmetric vacuum, JHEP01 (2007) 089 [hep-th/0610334] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/089
[4] N.J. Craig, P.J. Fox and J.G. Wacker, Reheating Metastable O’Raifeartaigh Models, Phys. Rev.D 75 (2007) 085006 [hep-th/0611006] [INSPIRE].
[5] W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A.C. Torres, Meta-Stable Supersymmetry Breaking in a Cooling Universe, JHEP03 (2007) 107 [hep-th/0611018] [INSPIRE]. · doi:10.1088/1126-6708/2007/03/107
[6] S.A. Abel, J. Jaeckel and V.V. Khoze, Why the early universe preferred the non-supersymmetric vacuum: Part II, JHEP01 (2007) 015 [hep-th/0611130] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/015
[7] E.F. Moreno and F.A. Schaposnik, R-symmetry and Supersymmetry Breaking at Finite Temperature, JHEP10 (2009) 007 [arXiv:0908.2770] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/007
[8] J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP05 (2008) 002 [arXiv:0710.2484] [INSPIRE]. · doi:10.1088/1475-7516/2008/05/002
[9] D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys.53 (1981) 43 [INSPIRE]. · doi:10.1103/RevModPhys.53.43
[10] E. Witten, Large-N Chiral Dynamics, Annals Phys.128 (1980) 363 [INSPIRE]. · doi:10.1016/0003-4916(80)90325-5
[11] N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP03 (2011) 023 [arXiv:1101.0026] [INSPIRE]. · doi:10.1088/1475-7516/2011/03/023
[12] J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolás and G. Servant, Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale, arXiv:1506.09217 [INSPIRE].
[13] J.L. Feng, H. Tu and H.-B. Yu, Thermal Relics in Hidden Sectors, JCAP10 (2008) 043 [arXiv:0808.2318] [INSPIRE]. · doi:10.1088/1475-7516/2008/10/043
[14] S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
[15] S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, Cambridge U.K. (1988).
[16] J. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge University Press, Cambridge U.K. (2006). · Zbl 1215.70002 · doi:10.1017/CBO9780511535130
[17] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett.B 318 (1993) 469 [hep-ph/9309335] [INSPIRE]. · doi:10.1016/0370-2693(93)91541-T
[18] D. Boyanovsky, Supersymmetry Breaking at Finite Temperature: The Goldstone Fermion, Phys. Rev.D 29 (1984) 743 [INSPIRE].
[19] A.K. Das and M. Kaku, Supersymmetry at high temperatures, Phys. Rev.D 18 (1978) 4540 [INSPIRE].
[20] L. Girardello, M.T. Grisaru and P. Salomonson, Temperature and Supersymmetry, Nucl. Phys.B 178 (1981) 331 [INSPIRE]. · doi:10.1016/0550-3213(81)90412-0
[21] K. Cheung and C.-W. Chiang, Splitting split supersymmetry, Phys. Rev.D 71 (2005) 095003 [hep-ph/0501265] [INSPIRE].
[22] A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP02 (2013) 126 [arXiv:1210.0555] [INSPIRE]. · doi:10.1007/JHEP02(2013)126
[23] U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept.496 (2010) 1 [arXiv:0910.1785] [INSPIRE]. · doi:10.1016/j.physrep.2010.07.001
[24] S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE]. · Zbl 1202.81229
[25] J.P. Vega and G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry, JHEP07 (2015) 159 [arXiv:1504.05200] [INSPIRE]. · doi:10.1007/JHEP07(2015)159
[26] P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE]. · doi:10.1007/978-3-540-73518-2_2
[27] L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.73 (1994) 3195 [hep-th/9405187] [INSPIRE]. · doi:10.1103/PhysRevLett.73.3195
[28] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[29] E. Hardy and J. Unwin, Preferential Reheating, forthcoming. · Zbl 1382.85003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.