×

Hydrodynamic limit of the symmetric exclusion process on a compact Riemannian manifold. (English) Zbl 1435.82021

Summary: We consider the symmetric exclusion process on suitable random grids that approximate a compact Riemannian manifold. We prove that a class of random walks on these random grids converge to Brownian motion on the manifold. We then consider the empirical density field of the symmetric exclusion process and prove that it converges to the solution of the heat equation on the manifold.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60J65 Brownian motion
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

References:

[1] Aubry, E.: Approximation of the spectrum of a manifold by discretization. arXiv preprint arXiv:1301.3663 (2013)
[2] Belkin, M.: Problems of Learning on Manifolds. PhD thesis, The University of Chicago (2003)
[3] Belkin, M.; Niyogi, P., Towards a theoretical foundation for Laplacian-based manifold methods, J. Comput. Syst. Sci., 74, 8, 1289-1308 (2008) · Zbl 1157.68056 · doi:10.1016/j.jcss.2007.08.006
[4] Blum, G., A note on the central limit theorem for geodesic random walks, Bull. Aust. Math. Soc., 30, 2, 169-173 (1984) · Zbl 0561.60071 · doi:10.1017/S0004972700001878
[5] Burago, D., Ivanov, S., Kurylev, Y.: A graph discretization of the laplace-beltrami operator. arXiv preprint arXiv:1301.2222 (2013) · Zbl 1327.58029
[6] Cipriani, A., van Ginkel, B.: The discrete Gaussian free field on a compact manifold. ArXiv e-prints (2018) · Zbl 1445.60033
[7] Demasi, A.; Presutti, E., Mathematical Methods for Hydrodynamic Limits (2006), Berlin: Springer, Berlin
[8] Fujiwara, K., Eigenvalues of laplacians on a closed riemannian manifold and its nets, Proc. Am. Math. Soc., 123, 8, 2585-2594 (1995) · Zbl 0833.58039 · doi:10.1090/S0002-9939-1995-1257106-5
[9] Giné, E., Koltchinskii, V., et al.: Empirical graph Laplacian approximation of Laplace-Beltrami operators: Large sample results. In: High dimensional probability. Institute of Mathematical Statistics, pp. 238-259 (2006) · Zbl 1124.60030
[10] Gonçalves, P.: Hydrodynamics for symmetric exclusion in contact with reservoirs. To appear in Springer Lecture Notes in Mathematics (2017) · Zbl 1442.82014
[11] Grigoryan, A., Heat Kernel and Analysis on Manifolds (2009), Providence: American Mathematical Society, Providence · Zbl 1206.58008
[12] Jørgensen, E., The central limit problem for geodesic random walks, Probab. Theory Relat. Fields, 32, 1, 1-64 (1975) · Zbl 0292.60103
[13] Kipnis, C.; Landim, C., Scaling limits of interacting particle systems (1999), Berlin: Springer, Berlin · Zbl 0927.60002
[14] Kurtz, Tg, Extensions of trotter’s operator semigroup approximation theorems, J. Funct. Anal., 3, 3, 354-375 (1969) · Zbl 0174.18401 · doi:10.1016/0022-1236(69)90031-7
[15] Liggett, T., Interacting particle systems (2012), Berlin: Springer, Berlin
[16] Loubes, J-M; Pelletier, B., A kernel-based classifier on a riemannian manifold, Stat. Decis. Int. Math. J. Stoch. Methods Models, 26, 1, 35-51 (2008) · Zbl 1418.62161
[17] Seppäläinen, T.: Translation Invariant Exclusion Processes, Book in Progress. University of Wisconsin, Department of Mathematics (2008)
[18] Singer, A., From graph to manifold laplacian: the convergence rate, Appl. Comput. Harmon. Anal., 21, 1, 128-134 (2006) · Zbl 1095.68102 · doi:10.1016/j.acha.2006.03.004
[19] Spitzer, F., Interaction of Markov processes, Adv. Math., 5, 2, 246-290 (1970) · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4
[20] Strichartz, Rs, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 1, 48-79 (1983) · Zbl 0515.58037 · doi:10.1016/0022-1236(83)90090-3
[21] van Handel, R.: Probability in high dimension. APC 550 Lecture notes (2016)
[22] Von Luxburg, U.; Belkin, M.; Bousquet, O., Consistency of spectral clustering, Ann. Stat., 36, 2, 555-586 (2008) · Zbl 1133.62045 · doi:10.1214/009053607000000640
[23] Wang, Z.: Lecture 14: Normal Coordinates. Lecture Notes of Riemannian Geometry Course (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.