×

Moment preserving constrained resampling with applications to particle-in-cell methods. (English) Zbl 1435.76100

Summary: The Moment Preserving Constrained Resampling (MPCR) algorithm for particle resampling is introduced and applied to particle-in-cell (PIC) methods to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. The general algorithm partitions the system space into smaller subsets and resamples the distribution within each subset. Further, the algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy (i.e. machine accuracy). The effectiveness of MPCR is demonstrated with several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The computational cost of MPCR is negligible compared to the cost of particle evolution in PIC methods, and the tests demonstrate that periodic particle resampling yields a significant improvement in the accuracy and stability of the results.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M35 Stochastic analysis applied to problems in fluid mechanics

Software:

XGC1

References:

[1] Birdsall, Charles K.; Langdon, A. Bruce, Plasma Physics Via Computer Simulation (2004), CRC Press
[2] Hockney, Roger W.; Eastwood, James W., Computer Simulation Using Particles (1988), CRC Press · Zbl 0662.76002
[3] Hahm, T. S., Nonlinear gyrokinetic equations for tokamak microturbulence, Phys. Fluids (1958-1988), 31, 9, 2670-2673 (1988) · Zbl 0649.76067
[4] Jacobs, G. B.; Hesthaven, J. S., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys., 214, 1, 96-121 (2006) · Zbl 1137.76461
[5] Myers, A.; Colella, P.; Van Straalen, B., A 4th-order particle-in-cell method with phase-space remapping for the Vlasov-Poisson equation, SIAM J. Sci. Comput., 39, 3, B467-B485 (2017) · Zbl 1520.65074
[6] Westermann, Thomas, Numerical modelling of the stationary Maxwell-Lorentz system in technical devices, Int. J. Numer. Model.: Electron. Netw. Devices Fields, 7, 1, 43-67 (1994)
[7] Hermeline, F.; Layouni, S.; Omnes, P., A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes, J. Comput. Phys., 227, 22, 9365-9388 (2008) · Zbl 1207.78035
[8] Assous, F.; Degond, P.; Heintze, E.; Raviart, P. A.; Segre, J., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109, 2, 222-237 (1993) · Zbl 0795.65087
[9] Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X., Nonlinear electromagnetic formulation for particle-in-cell simulation of lower hybrid waves in toroidal geometry, Phys. Plasmas, 23, 6, Article 062501 pp. (2016)
[10] Aydemir, Ahmet Y., A unified Monte Carlo interpretation of particle simulations and applications to non-neutral plasmas, Phys. Plasmas (1994-present), 1, 4, 822-831 (1994)
[11] Kleiber, R.; Hatzky, R.; Könies, A.; Kauffmann, K.; Helander, P., An improved control-variate scheme for particle-in-cell simulations with collisions, Comput. Phys. Commun., 182, 4, 1005-1012 (2011) · Zbl 1221.82067
[12] Hatzky, Roman; Könies, Axel; Mishchenko, Alexey, Electromagnetic gyrokinetic PIC simulation with an adjustable control variates method, J. Comput. Phys., 225, 1, 568-590 (2007) · Zbl 1127.78003
[13] Sonnendrücker, Eric; Wacher, Abigail; Hatzky, Roman; Kleiber, Ralf, A split control variate scheme for PIC simulations with collisions, J. Comput. Phys., 295, 402-419 (2015) · Zbl 1349.82120
[14] Gordon, Neil J.; Salmond, David J.; Smith, Adrian F. M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, (IEE Proceedings F-Radar and Signal Processing, vol. 140 (1993), IET), 107-113
[15] Kitagawa, Genshiro, A Monte Carlo filtering and smoothing method for non-Gaussian nonlinear state space models, (Proceedings of the 2nd US-Japan Joint Seminar on Statistical Time Series Analysis (1993)), 110-131
[16] Kitagawa, Genshiro, Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 1, 1-25 (1996)
[17] Douc, Randal; Cappé, Olivier, Comparison of resampling schemes for particle filtering, (Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, ISPA 2005 (2005), IEEE), 64-69
[18] Morelande, Mark R.; Zhang, Alan M., A mode preserving particle filter, (2011 IEEE International Conference on Acoustics, Speech and Signal Processing. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (2011), IEEE), 3984-3987
[19] Eyink, Gregory L.; Kim, Sangil, A maximum entropy method for particle filtering, J. Stat. Phys., 123, 5, 1071-1128 (2006) · Zbl 1138.94339
[20] Petetin, Yohan; Desbouvries, François, Optimal sir algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis, Stat. Comput., 23, 6, 759-775 (2013) · Zbl 1322.62218
[21] Lapenta, Giovanni; Brackbill, Jeremiah U., Dynamic and selective control of the number of particles in kinetic plasma simulations, J. Comput. Phys., 115, 1, 213-227 (1994) · Zbl 0811.76060
[22] Lapenta, Giovanni, Particle rezoning for multidimensional kinetic particle-in-cell simulations, J. Comput. Phys., 181, 1, 317-337 (2002) · Zbl 1178.76294
[23] Lapenta, Giovanni; Brackbill, J. U., Control of the number of particles in fluid and MHD particle in cell methods, Comput. Phys. Commun., 87, 1-2, 139-154 (1995) · Zbl 0923.76194
[24] Teunissen, Jannis; Ebert, Ute, Controlling the weights of simulation particles: adaptive particle management using k-d trees, J. Comput. Phys., 259, 318-330 (2014) · Zbl 1349.76740
[25] Vranic, M.; Grismayer, T.; Martins, J. L.; Fonseca, R. A.; Silva, L. O., Particle merging algorithm for PIC codes, Comput. Phys. Commun., 191, 65-73 (2015) · Zbl 1344.81036
[26] Assous, F.; Pougeard Dulimbert, T.; Segre, J., A new method for coalescing particles in PIC codes, J. Comput. Phys., 187, 2, 550-571 (2003) · Zbl 1038.76031
[27] Welch, D. R.; Genoni, T. C.; Clark, R. E.; Rose, D. V., Adaptive particle management in a particle-in-cell code, J. Comput. Phys., 227, 1, 143-155 (2007) · Zbl 1142.76047
[28] Luu, Phuc T.; Tückmantel, T.; Pukhov, A., Voronoi particle merging algorithm for PIC codes, Comput. Phys. Commun., 202, 165-174 (2016)
[29] Pfeiffer, M.; Mirza, A.; Munz, C.-D.; Fasoulas, S., Two statistical particle split and merge methods for particle-in-cell codes, Comput. Phys. Commun., 191, 9-24 (2015) · Zbl 1344.82052
[30] Ku, S.; Chang, C. S.; Diamond, P. H., Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry, Nucl. Fusion, 49, 11, Article 115021 pp. (2009)
[31] Ku, S.; Chang, C. S.; Diamond, P. H., Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry, Nucl. Fusion, 49, 11, Article 115021 pp. (2009)
[32] Wong, Chak-Kuen; Easton, Malcolm C., An efficient method for weighted sampling without replacement, SIAM J. Comput., 9, 1, 111-113 (1980) · Zbl 0447.68040
[33] Lawson, Charles L.; Hanson, Richard J., Solving Least Squares Problems (1995), Society for Industrial, and Applied Mathematics, SIAM: Society for Industrial, and Applied Mathematics, SIAM Philadelphia, “This SIAM edition is an unabridged, revised republication of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974”-T.p. verso. · Zbl 0860.65029
[34] Beevers, Kristopher R.; Huang, Wesley H., Fixed-lag sampling strategies for particle filtering slam, (2007 IEEE International Conference on Robotics and Automation (2007), IEEE), 2433-2438
[35] Timokhin, A. N., Time-dependent pair cascades in magnetospheres of neutron stars-I. Dynamics of the polar cap cascade with no particle supply from the neutron star surface, Mon. Not. R. Astron. Soc., 408, 4, 2092-2114 (2010)
[36] Nerush, E. N.; Kostyukov, I. Yu.; Fedotov, A. M.; Narozhny, N. B.; Elkina, N. V.; Ruhl, H., Laser field absorption in self-generated electron-positron pair plasma, Phys. Rev. Lett., 106, 3, Article 035001 pp. (2011)
[37] Ku, S.; Chang, C. S.; Hager, R.; Churchill, R. M.; Tynan, G. R.; Cziegler, I.; Greenwald, M.; Hughes, J.; Parker, S. E.; Adams, M. F.; D’Azevedo, E.; Worley, P., A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1, Phys. Plasmas, 25, 5, Article 056107 pp. (2018)
[38] Chang, C. S.; Ku, S.; Diamond, P. H.; Lin, Z.; Parker, S.; Hahm, T. S.; Samatova, N., Compressed ion temperature gradient turbulence in diverted tokamak edge, Phys. Plasmas, 16, 5, Article 056108 pp. (2009)
[39] Wesson, J.; Campbell, D. J., Tokamaks, International Series of Monographs on Physics (2011), OUP: OUP Oxford · Zbl 1241.82003
[40] Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E., A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma, J. Comput. Phys., 315, 467-475 (2016) · Zbl 1349.82148
[41] Adams, Mark F.; Ku, Seung-Hoe; Worley, Patrick; D’Azevedo, Ed; Cummings, Julian C.; Chang, C. S., Scaling to 150k cores: recent algorithm and performance engineering developments enabling XGC1 to run at scale, J. Phys. Conf. Ser., 180, Article 012036 pp. (2009)
[42] Dwyer, Rex A., Higher-dimensional Voronoi diagrams in linear expected time, Discrete Comput. Geom., 6, 3, 343-367 (1991) · Zbl 0727.68128
[43] Goldfarb, Donald; Idnani, Ashok, A numerically stable dual method for solving strictly convex quadratic programs, Math. Program., 27, 1, 1-33 (1983) · Zbl 0537.90081
[44] Berwin, A. T., quadprog, a FORTRAN library for solving quadratic programming problems (2013)
[45] Hager, R.; Chang, C. S., Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions, Phys. Plasmas, 23, 4, Article 042503 pp. (2016)
[46] Yoon, E. S.; Chang, C. S., A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation, Phys. Plasmas, 21, 3, Article 032503 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.