×

A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes. (English) Zbl 1207.78035

Summary: A new finite volume method is presented for discretizing the two-dimensional Maxwell equations. This method may be seen as an extension of the covolume type methods to arbitrary, possibly non-conforming or even non-convex, \(n\)-sided polygonal meshes, thanks to an appropriate choice of degrees of freedom. An equivalent formulation of the scheme is given in terms of discrete differential operators obeying discrete duality principles. The main properties of the scheme are its energy conservation, its stability under a CFL-like condition, and the fact that it preserves Gauss’ law and divergence free magnetic fields. Second-order convergence is demonstrated numerically on non-conforming and distorted meshes.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] Yee, K., Numerical solution of initial boundary value problems involving Maxwell’s Equations in isotropic media, IEEE Trans. Antennas Propag., AP-16, 302-307 (1966) · Zbl 1155.78304
[2] Hagness, S. C.; Taflove, A.; Gedney, S. D., Finite-difference time-domain methods, (Ciarlet, P. G., Handbook of Numerical Analysis, vol. 13 (2005), Elsevier North Holland) · Zbl 1100.78020
[3] McCartin, B. J.; Dicello, J. F., Three dimensional finite difference frequency domain scattering computation using the control region approximation, IEEE Trans. Magnetics, 25, 4, 3092-3094 (1989)
[4] F. Hermeline, Deux schémas d’approximation des équations de Vlasov-Maxwell bidimensionnelles sur des maillages de Voronoi et Delaunay, Technical report: note CEA/2591 (in French), 1989.; F. Hermeline, Deux schémas d’approximation des équations de Vlasov-Maxwell bidimensionnelles sur des maillages de Voronoi et Delaunay, Technical report: note CEA/2591 (in French), 1989.
[5] F. Hermeline, Maillage de Delaunay-Voronoi et approximation numérique de quelques équations aux dérivées partielles, Technical report: note CEA/2678 (in French), 1991.; F. Hermeline, Maillage de Delaunay-Voronoi et approximation numérique de quelques équations aux dérivées partielles, Technical report: note CEA/2678 (in French), 1991.
[6] Hermeline, F., Two coupled particle finite volume methods using Delaunay-Voronoi meshes for the approximation of Vlasov-Poisson and Vlasov-Maxwell equations, J. Comput. Phys., 106, 1-18 (1993) · Zbl 0777.65070
[7] Nicolaides, R. A.; Wang, D.-Q., Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions, Math. Comput., 67, 947-963 (1998) · Zbl 0907.65116
[8] Chung, E. T.; Engquist, B., Convergence analysis of fully discrete finite volume methods for Maxwell’s equations in nonhomogeneous media, SIAM J. Numer. Anal., 43, 1, 303-317 (1998) · Zbl 1128.78013
[9] Nedelec, J.-C., A new family of mixed elements in \(R^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107
[10] Assous, F.; Degond, P.; Heintzé, E.; Raviart, P.-A.; Segré, J., On a finite-element method for solving the three-dimensional Maxwell’s equations, J. Comput. Phys., 109, 222-237 (1993) · Zbl 0795.65087
[11] Assous, F.; Degond, P.; Segré, J., Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method, J. Comput. Phys., 128, 363-380 (1996) · Zbl 0862.65077
[12] Ben Belgacem, F.; Buffa, A.; Maday, Y., The mortar finite element method for 3D Maxwell equations: first results, SIAM J. Numer. Anal., 39, 880-901 (2001) · Zbl 1001.65123
[13] Buffa, A.; Maday, Y.; Rapetti, F., A sliding mesh-mortar method for a two dimensional eddy currents model of electric engines, Math. Model. Numer. Anal., 35, 191-228 (2001) · Zbl 0986.35111
[14] Collino, F.; Fouquet, T.; Joly, P., A conservative space-time mesh refinement method for the 1D wave equation. Part I: construction, Numer. Math., 95, 197-221 (2003) · Zbl 1048.65089
[15] Collino, F.; Fouquet, T.; Joly, P., A conservative space-time mesh refinement method for the 1D wave equation. Part II: analysis, Numer. Math., 95, 223-251 (2003) · Zbl 1036.65073
[16] Joly, P.; Rodriguez, J., An error analysis of conservative space-time mesh refinement methods for the one-dimensional wave equation, SIAM J. Numer. Anal., 43, 825-859 (2005) · Zbl 1097.65095
[17] Lacoste, P., La condensation de la matrice masse, ou mass-lumping, pour les éléments finis mixtes de Raviart-Thomas-Nédélec d’ordre 1, C.R. Acad. Sci. Paris, Ser. I, 339, 727-732 (2004) · Zbl 1061.65125
[18] Mur, G., Compatibility relations and the finite-element formulation of electromagnetic field problems, IEEE Trans. Magnetics, 30, 2972-2975 (1994)
[19] Mur, G., The fallacy of edge elements, IEEE Trans. Magnetics, 34, 3244-3247 (1998)
[20] Jiang, B.; Wu, J.; Povinelli, L. A., The origin of spurious modes in computational electromagnetics, J. Comput. Phys., 125, 104-123 (1996) · Zbl 0848.65086
[21] Mohammadian, A. H.; Shankar, V.; Hall, W., Computations of electromagnetic scattering and radiation using a time-domain finite volume discretization procedure, Comput. Phys. Commun., 68, 175-196 (1991)
[22] Cioni, J.-P.; Fezoui, L.; Steve, H., A parallel time-domain Maxwell solver using upwind schemes and triangular meshes, IMPACT Comput. Sci. Eng., 5, 215-247 (1993) · Zbl 0788.65119
[23] Voss, U.; Munz, C.-D.; Schneider, R., A finite volume method for the instationary Maxwell equations, Z. Angew. Math. Mech., 76, Suppl. 1, 579-580 (1996) · Zbl 0925.65240
[24] Munz, C.-D.; Schneider, R.; Voss, U., A finite-volume method for the Maxwell equations in the time domain, SIAM J. Sci. Comput., 22, 449-475 (2000) · Zbl 1039.78012
[25] Wang, Z. J.; Przekwas, A. J.; Liu, Yen, A FV-TD electromagnetic solver using adaptive Cartesian grids, Comput. Phys. Commun., 148, 17-29 (2002)
[26] Munz, C.-D.; Schneider, R.; Sonnendrücker, E.; Voss, U., Maxwell’s equations when the charge conservation is not satisfied, C.R. Acad. Sci. Paris, Ser. I, 328, 431-436 (1999) · Zbl 0937.78005
[27] Munz, C.-D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voss, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 484-511 (2000) · Zbl 0970.78010
[28] Munz, C.-D.; Omnes, P.; Schneider, R., A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes, Comput. Phys. Commun., 130, 83-117 (2000) · Zbl 0960.78019
[29] Remaki, M., A new finite volume scheme for solving Maxwell’s system, COMPEL, 19, 913-931 (2000) · Zbl 0994.78021
[30] Piperno, S.; Remaki, M.; Fezoui, L., A non-diffusive finite volume scheme for the 3D Maxwell equations on unstructured meshes, SIAM J. Numer. Anal., 39, 2089-2108 (2002) · Zbl 1221.65238
[31] Fezoui, L.; Lanteri, S.; Lohrengel, S.; Piperno, S., Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, Math. Model. Numer. Anal., 39, 1149-1176 (2005) · Zbl 1094.78008
[32] Canouet, N.; Fezoui, L.; Piperno, S., Discontinuous Galerkin time-domain solution of Maxwell’s equations on locally-refined non-conforming Cartesian grids, COMPEL, 24, 1381-1401 (2005) · Zbl 1079.78028
[33] Assous, F.; Ciarlet, P.; Raviart, P.-A.; Sonnendrücker, E., Characterization of the singular part of Maxwell’s equations in a polyhedral domain, Math. Methods Appl. Sci., 22, 485-499 (1999) · Zbl 0931.35169
[34] Ainsworth, M.; Coyle, J., Hierachic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes, Comput. Methods Appl. Mech. Eng., 190, 6709-6733 (2001) · Zbl 0991.78031
[35] Rachowicz, W.; Zdunek, A., An hp-adaptive finite element method for scattering problems in computational electromagnetics, Int. J. Numer. Methods Eng., 62, 1226-1249 (2005) · Zbl 1085.78010
[36] Houston, P.; Perugia, I.; Schötzau, D., Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator, Comput. Methods Appl. Mech. Eng., 194, 499-510 (2005) · Zbl 1063.78021
[37] L. Demkowicz, J. Kurtz, Projection-based interpolation and automatic hp; L. Demkowicz, J. Kurtz, Projection-based interpolation and automatic hp · Zbl 1128.65096
[38] Costabel, M.; Dauge, M.; Schwab, C., Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains, Math. Models Methods Appl. Sci., 15, 575-622 (2005) · Zbl 1078.65089
[39] Ciarlet, P.; Jamelot, E., Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries, J. Comput. Phys., 226, 1122-1135 (2007) · Zbl 1128.78002
[40] Assous, F.; Ciarlet, P.; Garcia, E.; Segré, J., Time-dependent Maxwell’s equations with charges in singular geometries, Comput. Methods Appl. Mech. Eng., 196, 665-681 (2006) · Zbl 1121.78305
[41] Assous, F.; Ciarlet, P.; Segré, J., Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method, J. Comput. Phys., 161, 218-249 (2000) · Zbl 1007.78014
[42] Cockburn, B.; Li, F.; Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys., 194, 588-610 (2004) · Zbl 1049.78019
[43] Hesthaven, J. S.; Warburton, T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 186-221 (2002) · Zbl 1014.78016
[44] Jacobs, G. B.; Hesthaven, J. S., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys., 214, 96-121 (2006) · Zbl 1137.76461
[45] Falk, R. S.; Richter, G. R., Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal., 36, 935-952 (1999) · Zbl 0923.65065
[46] Monk, P.; Richter, G. R., A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Comput., 22-23, 443-477 (2005) · Zbl 1082.65099
[47] Hermeline, F., Une méthode de volumes finis pour les équations elliptiques du second ordre, C.R. Acad. Sci. Paris, Ser. 1, 326, 1433-1436 (1998) · Zbl 0912.65104
[48] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 481-499 (2000) · Zbl 0949.65101
[49] Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Eng., 192, 1939-1959 (2003) · Zbl 1037.65118
[50] Hermeline, F., Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Eng., 192, 2497-5326 (2007) · Zbl 1173.76362
[51] Domelevo, K.; Omnes, P., A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM: Math. Model. Numer. Anal., 39, 1203-1249 (2005) · Zbl 1086.65108
[52] Delcourte, S.; Domelevo, K.; Omnes, P., Discrete duality finite volume method for second order elliptic problems, (Benkhaldoun, F.; Ouazar, D.; Raghay, S., Finite Volumes for Complex Applications IV (2005), Hermes Science publishing), 447-458 · Zbl 1422.65338
[53] Delcourte, S.; Domelevo, K.; Omnes, P., A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal., 45, 3, 1142-1174 (2007) · Zbl 1152.65110
[54] Bossavit, A., Discretization of electromagnetic problems: the “generalized finite differences” approach, (Ciarlet, P. G., Handbook of Numerical Analysis, Vol. 13 (2005), Elsevier North Holland) · Zbl 1109.78001
[55] Andreianov, B.; Boyer, F.; Hubert, F., Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differ. Equations, 23, 1, 145-195 (2007) · Zbl 1111.65101
[56] Chainais-Hillairet, C., Finite volume schemes for two dimensional drift-diffusion and energy-transport models, (Benkhaldoun, F.; Ouazar, D.; Raghay, S., Finite Volumes for Complex Applications IV (2005), Hermes Science Publishing), 13-22 · Zbl 1374.82031
[57] C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models, Int. J. Numer. Meth. Fluids, in press, doi:10.1002/fld.1393; C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models, Int. J. Numer. Meth. Fluids, in press, doi:10.1002/fld.1393 · Zbl 1154.82034
[58] C. Pierre, Modélisation et simulation de l’activité électrique du cœur dans le thorax, analyse numérique et méthodes de volumes finis, Ph.D. Thesis (in French), University of Nantes, France, 2005.; C. Pierre, Modélisation et simulation de l’activité électrique du cœur dans le thorax, analyse numérique et méthodes de volumes finis, Ph.D. Thesis (in French), University of Nantes, France, 2005.
[59] Hermeline, F., A finite volume method for solving Maxwell’s equations in inhomogeneous media on arbitrary meshes, C.R. Acad. Sci. Paris, Ser. 1, 339, 893-898 (2004) · Zbl 1070.65074
[60] F. Hermeline, Une méthode automatique de maillage en dimension \(N\); F. Hermeline, Une méthode automatique de maillage en dimension \(N\)
[61] Hermeline, F., Triangulation automatique d’un polyèdre en dimension \(N\), Revue Automatique Informatique Recherche Opérationnelle, Analyse Numérique/Numer. Anal., 16, 211-242 (1982), (in French) · Zbl 0567.65083
[62] George, P. L.; Hermeline, F., Delaunay’s mesh of a convex polyhedron in dimension \(d\). Application to arbitrary polyhedra, Int. J. Numer. Methods Eng., 33, 975-995 (1992) · Zbl 0762.65111
[63] George, P. L.; Borouchaki, H., Delaunay Triangulation and Meshing. Applications to Finite Elements (1998), Hermes Science Publishing: Hermes Science Publishing Paris · Zbl 0908.65143
[64] Piperno, S., \(L^2\)-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes, M2AN, Math. Model. Numer. Anal., 34, 139-158 (2000) · Zbl 0949.65104
[65] Madsen, N. K.; Ziolkowski, R. W., Numerical solution of Maxwell’s equations in the time domain using irregular nonorthogonal grids, Wave Motion, 10, 583-596 (1995) · Zbl 0672.73029
[66] Le Martret, R.; Le Potier, C., Finite volume solution of Maxwell’s equations in nonsteady mode, La Recherche Aérospatiale, 5, 329-342 (1994)
[67] Madsen, N. K., Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids, J. Comput. Phys., 119, 34-45 (1995) · Zbl 0822.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.