×

Measure expansivity and specification for pointwise dynamics. (English) Zbl 1435.37018

Summary: We introduce pointwise measure expansivity for bi-measurable maps. We show through examples that this notion is weaker than measure expansivity. In spite of this fact, we show that many results for measure expansive systems hold true for pointwise systems as well. Then, we study the concept of mixing, specification and chaos at a point in the phase space of a continuous map. We show that mixing at a shadowable point is not sufficient for it to be a specification point, but mixing of the map force a shadowable point to be a specification point. We prove that periodic specification points are Devaney chaotic point. Finally, we show that existence of two distinct specification points is sufficient for a map to have positive Bowen entropy.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B02 Dynamics in general topological spaces
37B40 Topological entropy

References:

[1] Arai, T., Chinen, \[N.: PP\]-Chaos implies distributional Chaos and Chaos in the sense of Devaney with positive topological entropy. Topol. Appl. 154, 1254-1262 (2007) · Zbl 1121.54059 · doi:10.1016/j.topol.2005.11.016
[2] Arbieto, A., Rego, E.: Positive entropy through pointwise dynamics, Preprint, arXiv:1805.07503, (2018) · Zbl 1435.37038
[3] Aoki, N.: Topological dynamics. Top. General Topol. 41, 625-740 (1989). (North-Holland Publishing Co., Amsterdam) · Zbl 0694.54032 · doi:10.1016/S0924-6509(08)70161-2
[4] Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of Chaos. Am. Math. Month. 99, 332-334 (1992) · Zbl 0758.58019 · doi:10.1080/00029890.1992.11995856
[5] Bowen, R.: Periodic Points and Measures for Axiom-A Diffeomorphisms. Trans. Am. Math. Soc. 154, 377-397 (1971) · Zbl 0212.29103
[6] Carvalho, B., Cordiero, \[W.: NN\]-expansive homeomorphisms with the shadowing property. J. Differ. Equ. 261, 3734-3755 (2016) · Zbl 1360.37026 · doi:10.1016/j.jde.2016.06.003
[7] Das, P., Das, T.: Various types of shadowing and specification on uniform spaces. J. Dyn. Control Syst. 24, 153-167 (2018) · Zbl 1385.37013 · doi:10.1007/s10883-017-9388-1
[8] Feldman, M.B.: A proof of Lusin’s theorem. Am. Math. Month. 88, 191-192 (1981) · Zbl 0453.28005 · doi:10.1080/00029890.1981.11995222
[9] Kawaguchi, N.: Quantitative shadowable points. Dyn. Syst. 32, 504-518 (2017) · Zbl 1396.37031 · doi:10.1080/14689367.2017.1280664
[10] Kawaguchi, N.: Properties of shadowable points: Chaos and equicontinuity. Bull. Braz. Math. Soc.New Ser. 48, 599-622 (2017) · Zbl 1380.37053 · doi:10.1007/s00574-017-0033-0
[11] Keynes, H.B., Robertson, J.B.: Generators for topological entropy and expansiveness. Math. Syst. Theory 3, 51-59 (1969) · Zbl 0176.20603 · doi:10.1007/BF01695625
[12] Kwietniak, D., Oprocha, P.: A note on the average shadowing property for expansive maps. Topol. Appl. 159, 19-27 (2012) · Zbl 1237.37018 · doi:10.1016/j.topol.2011.04.016
[13] Moothathu, T.K.S.: Implications of pseudo-orbit tracing property for continuous maps on compacta. Topol. Appl. 158, 2232-2239 (2011) · Zbl 1235.54018 · doi:10.1016/j.topol.2011.07.016
[14] Morales, C.A.: Measure-expansive systems. IMPA D083 (2011) (preprint)
[15] Morales, C.A.: Shadowable points. Dyn. Syst. 31, 347-356 (2016) · Zbl 1369.37030 · doi:10.1080/14689367.2015.1131813
[16] Reddy, W.L.: Pointwise Expansion Homeomorphisms. J. London Math. Soc. 2, 232-236 (1970) · Zbl 0188.55501 · doi:10.1112/jlms/s2-2.2.232
[17] Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190, 285-299 (1974) · Zbl 0286.28010 · doi:10.1090/S0002-9947-1974-0352411-X
[18] Utz, W.R.: Unstable homeomorphisms. Proc. Am. Math. Soc. 1, 769-774 (1950) · Zbl 0040.09903 · doi:10.1090/S0002-9939-1950-0038022-3
[19] Walters, P.: An introduction to Ergodic theory, vol. 79. Springer Science & Business. Media, New York (2000) · Zbl 0958.28011
[20] Ye, X., Zhang, G.: Entropy points and applications. Trans. Am. Math. Soc. 359, 6167-6186 (2007) · Zbl 1121.37020 · doi:10.1090/S0002-9947-07-04357-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.