×

Gauge and gravitational instantons: from 3-forms and fermions to weak gravity and flat axion potentials. (English) Zbl 1423.83014

Summary: We investigate the role of gauge and gravitational instantons in the context of the Swampland program. Our focus is on the global symmetry breaking they induce, especially in the presence of fermions. We first recall and make more precise the description of the dilute instanton gas through a 3-form gauge theory. In this language, the familiar suppression of instanton effects by light fermions can be understood as the decoupling of the 3-form. Even if all fermions remain massive, such decoupling may occur on the basis of an explicitly unbroken but anomalous global symmetry in the fermionic sector. This should be forbidden by quantum gravity, which leads us to conjecture a related, cutoff-dependent lower bound on the induced axion potential. Finally, we note that the gravitational counterpart of the above are \(K3\) instantons. These are small fluctuations of Euclidean spacetime with \(K3\) topology, which induce fermionic operators analogous to the ’t Hooft vertex in gauge theories. Although Planck-suppressed, they may be phenomenologically relevant if accompanied by other higher-dimension fermion operators or if the \(K3\) carries appropriate gauge fluxes.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83E30 String and superstring theories in gravitational theory
35Q51 Soliton equations
81T10 Model quantum field theories
14J28 \(K3\) surfaces and Enriques surfaces
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C45 Quantization of the gravitational field

References:

[1] A. Aurilia, The problem of confinement: from two-dimensions to four-dimensions, Phys. Lett.B 81 (1979) 203.
[2] M. Luscher, The secret long range force in quantum field theories with instantons, Phys. Lett.B 78 (1978) 465.
[3] P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys.B 171 (1980) 253 [INSPIRE].
[4] G. Dvali, S. Folkerts and A. Franca, How neutrino protects the axion, Phys. Rev.D 89 (2014) 105025 [arXiv:1312.7273] [INSPIRE].
[5] G. Dvali and L. Funcke, Small neutrino masses from gravitational θ-term, Phys. Rev.D 93 (2016) 113002 [arXiv:1602.03191] [INSPIRE].
[6] G. Dvali and L. Funcke, Domestic axion, arXiv:1608.08969 [INSPIRE].
[7] G. Dvali, Topological origin of chiral symmetry breaking in QCD and in gravity, arXiv:1705.06317 [INSPIRE].
[8] G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
[9] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
[10] A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett.114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].
[11] A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes and their impact on particle physics and cosmology, Front. Astron. Space Sci.5 (2018) 35 [arXiv:1807.00824] [INSPIRE].
[12] G. Shiu and W. Staessens, Strong dynamics and natural inflation, Phys. Rev.D 98 (2018) 083504 [arXiv:1807.00620] [INSPIRE]. · Zbl 1402.83122
[13] G. Shiu and W. Staessens, Phases of inflation, JHEP10 (2018) 085 [arXiv:1807.00888] [INSPIRE]. · Zbl 1402.83122 · doi:10.1007/JHEP10(2018)085
[14] L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys.B 325 (1989) 687 [INSPIRE].
[15] S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys.B 329 (1990) 387 [INSPIRE].
[16] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev.D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
[17] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
[18] Y. Nomura, T. Watari and T. Yanagida, Quintessence axion potential induced by electroweak instanton effects, Phys. Lett.B 484 (2000) 103 [hep-ph/0004182] [INSPIRE].
[19] C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett.113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
[20] T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
[21] M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP08 (2015) 032 [arXiv:1503.03886] [INSPIRE]. · Zbl 1387.83088 · doi:10.1007/JHEP08(2015)032
[22] J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP10 (2015) 023 [arXiv:1503.04783] [INSPIRE]. · Zbl 1388.83091
[23] T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP01 (2016) 091 [arXiv:1503.07853] [INSPIRE]. · Zbl 1388.83632 · doi:10.1007/JHEP01(2016)091
[24] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett.B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE]. · Zbl 1345.83049
[25] J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP04 (2016) 017 [arXiv:1504.00659] [INSPIRE]. · Zbl 1388.83892
[26] D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, JHEP02 (2016) 128 [arXiv:1504.03566] [INSPIRE]. · Zbl 1388.83122 · doi:10.1007/JHEP02(2016)128
[27] B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP12 (2015) 108 [arXiv:1506.03447] [INSPIRE]. · Zbl 1388.81939
[28] E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP10 (2015) 188 [arXiv:1508.00009] [INSPIRE]. · Zbl 1388.83938 · doi:10.1007/JHEP10(2015)188
[29] B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE]. · Zbl 1388.83119 · doi:10.1007/JHEP02(2016)140
[30] K. Kooner, S. Parameswaran and I. Zavala, Warping the weak gravity conjecture, Phys. Lett.B 759 (2016) 402 [arXiv:1509.07049] [INSPIRE]. · Zbl 1367.83092
[31] N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev.D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].
[32] R. Kappl, H.P. Nilles and M.W. Winkler, Modulated natural inflation, Phys. Lett.B 753 (2016) 653 [arXiv:1511.05560] [INSPIRE]. · Zbl 1367.83107
[33] K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP01 (2016) 149 [arXiv:1511.00132] [INSPIRE]. · Zbl 1388.81796 · doi:10.1007/JHEP01(2016)149
[34] D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev.D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
[35] L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP04 (2016) 020 [arXiv:1512.00025] [INSPIRE]. · Zbl 1388.83923
[36] B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP08 (2017) 025 [arXiv:1606.08437] [INSPIRE]. · Zbl 1381.83065 · doi:10.1007/JHEP08(2017)025
[37] D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE]. · Zbl 1373.83044 · doi:10.1007/JHEP01(2017)088
[38] A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the magnetic weak gravity conjecture for axions?, Fortsch. Phys.65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE]. · Zbl 1371.83204
[39] S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys.B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE]. · Zbl 1405.81105
[40] A. Hebecker, S. Leonhardt, J. Moritz and A. Westphal, Thraxions: ultralight throat axions, JHEP04 (2019) 158 [arXiv:1812.03999] [INSPIRE]. · doi:10.1007/JHEP04(2019)158
[41] S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity conjectures in four dimensions, arXiv:1901.08065 [INSPIRE]. · Zbl 1421.81129
[42] F. Marchesano and M. Wiesner, Instantons and infinite distances, JHEP08 (2019) 088 [arXiv:1904.04848] [INSPIRE]. · Zbl 1421.83121 · doi:10.1007/JHEP08(2019)088
[43] T.W. Grimm and D. Van De Heisteeg, Infinite distances and the axion weak gravity conjecture, arXiv:1905.00901 [INSPIRE].
[44] E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE]. · Zbl 1527.83096 · doi:10.1002/prop.201900037
[45] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].
[46] S.-J. Rey, The axion dynamics in wormhole background, Phys. Rev.D 39 (1989) 3185 [INSPIRE].
[47] R. Alonso and A. Urbano, Wormholes and masses for Goldstone bosons, JHEP02 (2019) 136 [arXiv:1706.07415] [INSPIRE]. · Zbl 1411.83008
[48] J. Moritz and T. Van Riet, Racing through the swampland: de Sitter uplift vs weak gravity, JHEP09 (2018) 099 [arXiv:1805.00944] [INSPIRE]. · Zbl 1398.83109
[49] G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev.D 14 (1976) 3432 [Erratum ibid.D 18 (1978) 2199] [INSPIRE].
[50] G. ’t Hooft, How instantons solve the U(1) problem, Phys. Rept.142 (1986) 357 [INSPIRE]. · doi:10.1016/0370-1573(86)90117-1
[51] S.W. Hawking, Space-time foam, Nucl. Phys.B 144 (1978) 349 [INSPIRE].
[52] S.W. Hawking and C.N. Pope, Symmetry breaking by instantons in supergravity, Nucl. Phys.B 146 (1978) 381 [INSPIRE].
[53] N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].
[54] N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP03 (2011) 023 [arXiv:1101.0026] [INSPIRE].
[55] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
[56] L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
[57] F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP09 (2014) 184 [arXiv:1404.3040] [INSPIRE]. · doi:10.1007/JHEP09(2014)184
[58] R. Blumenhagen and E. Plauschinn, Towards universal axion inflation and reheating in string theory, Phys. Lett.B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE]. · Zbl 1317.83087
[59] A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett.B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE]. · Zbl 1317.83089
[60] A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC’s of instantons, Sov. Phys. Usp.25 (1982) 195 [INSPIRE]. · doi:10.1070/PU1982v025n04ABEH004533
[61] S.D.H. Hsu and P. Sikivie, Long range forces from two neutrino exchange revisited, Phys. Rev.D 49 (1994) 4951 [hep-ph/9211301] [INSPIRE].
[62] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1., Phys. Rev.122 (1961) 345 [INSPIRE]. · doi:10.1103/PhysRev.122.345
[63] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev.124 (1961) 246 [INSPIRE]. · doi:10.1103/PhysRev.124.246
[64] D.G. Caldi, Quark mass generation by instantons, Phys. Rev. Lett.39 (1977) 121 [INSPIRE]. · doi:10.1103/PhysRevLett.39.121
[65] R.D. Carlitz, Bound states from instantons, Phys. Rev.D 17 (1978) 3225 [INSPIRE].
[66] R. D’Auria, S. Ferrara and P. Fré, Special and quaternionic isometries: general couplings in N = 2 supergravity and the scalar potential, Nucl. Phys.B 359 (1991) 705 [INSPIRE].
[67] S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys.B 306 (1988) 890 [INSPIRE].
[68] A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can gravitational instantons really constrain axion inflation?, JHEP02 (2017) 097 [arXiv:1607.06814] [INSPIRE]. · Zbl 1377.83157
[69] R. Delbourgo and A. Salam, The gravitational correction to pcac, Phys. Lett.B 40 (1972) 381.
[70] T. Eguchi and P.G.O. Freund, Quantum gravity and world topology, Phys. Rev. Lett.37 (1976) 1251 [INSPIRE].
[71] K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev.D 21 (1980) 2848 [Erratum ibid.D 22 (1980) 1499] [INSPIRE].
[72] L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys.B 234 (1984) 269 [INSPIRE].
[73] T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rept.66 (1980) 213 [INSPIRE]. · doi:10.1016/0370-1573(80)90130-1
[74] T. Eguchi and A.J. Hanson, Asymptotically flat selfdual solutions to Euclidean gravity, Phys. Lett.B 74 (1978) 249.
[75] T. Eguchi and A.J. Hanson, Selfdual solutions to Euclidean gravity, Annals Phys.120 (1979) 82 [INSPIRE]. · Zbl 0409.53020 · doi:10.1016/0003-4916(79)90282-3
[76] G. ’t Hooft, A physical interpretation of gravitational instantons, Nucl. Phys.B 315 (1989) 517 [INSPIRE].
[77] R. Holman, T.W. Kephart and S.-J. Rey, Semiclassical gravity and invisible axions, Phys. Rev. Lett.71 (1993) 320 [hep-ph/9207208] [INSPIRE].
[78] S. ArunaSalam and A. Kobakhidze, Charged gravitational instantons: extra CP-violation and charge quantisation in the Standard Model, Eur. Phys. J.C 79 (2019) 49 [arXiv:1808.01796] [INSPIRE].
[79] S. Deser, M.J. Duff and C.J. Isham, Gravitationally induced CP effects, Phys. Lett.B 93 (1980) 419.
[80] S.W. Hawking, D.N. Page and C.N. Pope, Quantum gravitational bubbles, Nucl. Phys.B 170 (1980) 283 [INSPIRE].
[81] S.R. Coleman, Quantum tunneling and negative eigenvalues, Nucl. Phys.B 298 (1988) 178 [INSPIRE].
[82] V.A. Rubakov and O.Yu. Shvedov, A negative mode about Euclidean wormhole, Phys. Lett.B 383 (1996) 258 [gr-qc/9604038] [INSPIRE].
[83] J.Y. Kim, H.W. Lee and Y.S. Myung, Negative modes in the four-dimensional stringy wormholes, Phys. Rev.D 56 (1997) 6684 [hep-th/9701116] [INSPIRE].
[84] J.Y. Kim, Y.-b. Kim and J.E. Hetrick, Classical stability of stringy wormholes in flat and AdS spaces, hep-th/0301191 [INSPIRE].
[85] T. Hertog, B. Truijen and T. Van Riet, Euclidean axion wormholes have multiple negative modes, Phys. Rev. Lett.123 (2019) 081302 [arXiv:1811.12690] [INSPIRE].
[86] S.W. Hawking, Wormholes in space-time, Phys. Rev.D 37 (1988) 904 [INSPIRE]. · Zbl 0653.53061
[87] A. Lyons, Fermions in wormholes, Nucl. Phys.B 324 (1989) 253 [INSPIRE].
[88] J.R. Ellis, E. Floratos and D.V. Nanopoulos, Wormhole effects on the masses of spin 0 bosons and spin 1/2 fermions, Phys. Lett.B 225 (1989) 121 [INSPIRE].
[89] K.M. Lee and S.M. Smirnakis, Wormholes made of fermions, HUTP-89-A024 (1989).
[90] N. Arkani-Hamed, J. Orgera and J. Polchinski, Euclidean wormholes in string theory, JHEP12 (2007) 018 [arXiv:0705.2768] [INSPIRE]. · Zbl 1246.81199 · doi:10.1088/1126-6708/2007/12/018
[91] H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept.494 (2010) 1 [arXiv:0812.1594] [INSPIRE]. · doi:10.1016/j.physrep.2010.05.002
[92] M. Bianchi, S. Kovacs and G. Rossi, Instantons and supersymmetry, Lect. Notes Phys.737 (2008) 303 [hep-th/0703142] [INSPIRE]. · Zbl 1151.81362 · doi:10.1007/978-3-540-74233-3_14
[93] S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE]. · Zbl 0972.81028
[94] R. Blumenhagen, M. Cvetic, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci.59 (2009) 269 [arXiv:0902.3251]. · doi:10.1146/annurev.nucl.010909.083113
[95] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Instanton density in a theory with massless quarks, Nucl. Phys.B 163 (1980) 46 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.