×

Numerical solution of two-dimensional nonlinear Schrödinger equation using a new two-grid finite element method. (English) Zbl 1434.65185

Summary: A new two-grid finite element scheme is presented for two-dimensional nonlinear Schrödinger equation. One Newton iteration is applied on the fine grid to linearize the nonlinear system using the coarse-grid solution as the initial guess, and furthermore one more linear system on the coarse space is solved. The error estimations of the two-grid solution in the \(L^2\) and \(H^1\) norm are given. It is shown, both theoretically and numerically, that the coarse space can be extremely coarse and two-grid algorithm still achieves optimal approximation as long as the mesh sizes satisfy \(H = O(h^{\frac{1}{3}})\).

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
Full Text: DOI

References:

[1] Zhang, F.; Peréz-Ggarcĺa, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
[2] Hu, H., A compact difference scheme of two-dimensional linear Schrödinger equations, J. Jia Ying Univ. (Nat. Sci.), 28, 11-15 (2010)
[3] Hu, H.; Xie, S., A high accurate and conservative difference scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. A J. Chin. Univ., 29, 36-44 (2014) · Zbl 1313.65216
[4] Zhang, L.; Chang, Q., A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 145, 603-612 (2003) · Zbl 1037.65092
[5] Li, X.; Zhang, L.; Wang, S., A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 219, 3187-3197 (2012) · Zbl 1309.65099
[6] Wang, T.; Zhang, L., Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 182, 1780-1794 (2006) · Zbl 1161.65349
[7] Wang, T.; Zhang, L.; Chen, F., Conservative difference scheme based on numerical analysis for nonlinear Schrödinger equation with wave operator, Trans. Nanjing Univ. Aeronaut. Astronaut., 23, 87-93 (2006) · Zbl 1111.65076
[8] Wang, T., Uniform pointwise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrödinger equation perturbed by wave operator, J. Math. Anal. Appl., 422, 286-308 (2015) · Zbl 1300.65061
[9] Akrivis, G. D.; Dougalis, V. A.; Karakashian, O. A., On fully discrete galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59, 31-53 (1991) · Zbl 0739.65096
[10] Jin, J.; Wei, N.; Zhang, H., A two-grid finite element method for the nonlinear Schrödinger equation, J. Comput. Math., 33, 146-157 (2015) · Zbl 1340.65221
[11] Wu, L., Two-grid strategy for unsteady state nonlinear Schrödinger equations, Int. J. Pure Appl. Math., 68, 465-475 (2011) · Zbl 1217.65195
[12] Wu, L., Two-grid mixed finite-element methods for nonlinear Schrödinger equations, Numer. Methods Partial Differential Equations, 28, 63-73 (2012) · Zbl 1252.65171
[13] Liao, H.; Sun, Z.; Shi, H., Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations (in chinese), Sci. Sin. Math., 4, 827-842 (2010) · Zbl 1488.65255
[14] Wang, T., Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrödinger equations, J. Comput. Appl. Math., 235, 4237-4250 (2011) · Zbl 1227.65086
[15] Gao, Z.; Xie, S., Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61, 593-614 (2011) · Zbl 1221.65220
[16] Xu, Y.; Zhang, L., Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation, Comput. Phys. Comm., 183, 1082-1093 (2012) · Zbl 1277.65073
[17] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243, 382-399 (2013) · Zbl 1349.65347
[18] Mohebbi, A.; Dehghan, M., The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225, 124-134 (2009) · Zbl 1159.65081
[19] Wang, H., Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput., 170, 17-35 (2005) · Zbl 1082.65570
[20] Hu, H., Two-grid method for two-dimensional nonlinear Schrödinger equation by finite element method, Numer. Methods Partial Differential Equations, 34, 2, 385-400 (2018) · Zbl 1390.65107
[21] Hu, H., Two-grid method for two-dimensional nonlinear Schrödinger equation by mixed finite element method, Comput. Math. Appl., 75, 3, 900-917 (2018) · Zbl 1409.65072
[22] Xu, J., A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077
[23] Xu, J., Two-grid discretization techniques for linear and non-linear pdes, SIAM J. Numer. Anal., 33, 1759-1777 (1996) · Zbl 0860.65119
[24] Dawson, C. N.; Wheeler, M. F.; Woodward, C. S., A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35, 435-452 (1998) · Zbl 0927.65107
[25] Chen, Y.; Huang, Y.; Yu, D., A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Internat. J. Numer. Mech. Eng., 57, 193-209 (2003) · Zbl 1062.65104
[26] Chen, Y.; Liu, H.; Liu, S., Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods, Internat. J. Numer. Methods Eng., 69, 408-422 (2007) · Zbl 1194.76107
[27] Chen, L.; Chen, Y., Two-grid discretization scheme for nonlinear reaction diffusion equations by mixed finite element methods, Adv. Appl. Math. Mech., 6, 203-219 (2014) · Zbl 1314.65126
[28] Zhou, Y., Application of Discrete Functional Analysis to the Finite Difference Methods (1990), International Academic publishers: International Academic publishers Bei Jing
[29] Hu, H.; Chen, Y.; Zhou, J., Two-grid method for miscible displacement problem by mixed finite element methods and finite element method of characteristics, Comput. Math. Appl., 72, 11, 2694-2715 (2016) · Zbl 1368.76034
[30] Chen, Y.; Hu, H., Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics, Commun. Comput. Phys., 19, 5, 1503-1528 (2016) · Zbl 1373.76079
[31] Hu, H.; Fu, Y.; Zhou, J., Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach, Numer. Algorithms, 81, 3, 879-914 (2019) · Zbl 1442.65242
[32] Zeng, J.; Chen, Y.; Hu, H., Two-grid method for compressible miscible displacement problem by cfem- mfem, J. Comput. Appl. Math., 337, 175-189 (2018) · Zbl 1444.76116
[33] Chien, C. S.; Huang, H. T.; Jeng, B. W.; Lid, Z. C., Two-grid discretization schemes for nonlinear Schrödinger equations, J. Comput. Appl. Math., 214, 549-571 (2008) · Zbl 1135.65361
[34] Susanne, C.; Brenner, L.; Scott, R., The Mathematical Theory of Finite Element Methods (2002), Springer · Zbl 1012.65115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.