×

Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. (English) Zbl 1349.65347

Summary: In this paper, a fourth-order compact and energy conservative difference scheme is proposed for solving the two-dimensional nonlinear Schrödinger equation with periodic boundary condition and initial condition, and the optimal convergent rate, without any restriction on the grid ratio, at the order of \(O(h^4+\tau^2)\) in the discrete \(L^2\)-norm with time step \(\tau\)and mesh size \(h\) is obtained. Besides the standard techniques of the energy method, a new technique and some important lemmas are proposed to prove the high order convergence. In order to avoid the outer iteration in implementation, a linearized compact and energy conservative difference scheme is derived. Numerical examples are given to support the theoretical analysis.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Argyris, J.; Haase, M., An engineers guide to solitons phenomena: application of the finite element method, Comput. Methods Appl. Mech. Eng., 61, 71-122 (1987) · Zbl 0624.76020
[2] Akrivis, G.; Dougalis, V.; Karakashian, O., On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59, 31-53 (1991) · Zbl 0739.65096
[3] Bao, W.; Cai, Y., Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82, 99-128 (2013) · Zbl 1264.65146
[4] Bao, W.; Cai, Y., Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J Numer. Anal., 50, 492-521 (2012) · Zbl 1246.35188
[5] Bao, W.; Du, Q.; Zhang, Y., Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66, 758-786 (2006) · Zbl 1141.35052
[6] Bao, W.; Jaksch, D.; Markowich, P. A., Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187, 318-342 (2003) · Zbl 1028.82501
[7] Bao, W.; Jin, S.; Markowich, P. A., On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175, 487-524 (2002) · Zbl 1006.65112
[8] Bao, W.; Li, H.; Shen, J., A generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31, 3685-3711 (2009) · Zbl 1205.82096
[9] Bao, W.; Shen, J., A Fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26, 2010-2028 (2005) · Zbl 1084.35083
[10] Berikelashvili, G.; Gupta, M. M.; Mirianashvili, M., Convergence of fourth order compact difference schemes for three-dimensional convection-diffusion equations, SIAMJ. Numer. Anal., 45, 443-455 (2007) · Zbl 1140.65074
[11] Besse, C.; Bidegaray, B.; Descombes, S., Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40, 26-40 (2002) · Zbl 1026.65073
[13] Caradoc-Davis, B. M.; Ballagh, R. J.; Burnett, K., Coherent dynamics of vortex formation in trapped Bose-Einstein condensates, Phys. Rev. Lett., 83, 895-898 (1999)
[15] Chang, Q.; Guo, B.; Jiang, H., Finite difference method for generalized Zakharov equations, Math. Comput., 64, 537-553 (1995) · Zbl 0827.65138
[16] Chang, Q.; Jia, E.; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148, 397-415 (1999) · Zbl 0923.65059
[17] Cohen, G., High-Order Numerical Methods for Transient Wave Equations (2002), Springer: Springer New York · Zbl 0985.65096
[18] Dai, W., An improved compact finite difference scheme for solving an N-carrier system with Neumann boundary conditions, Numer. Methods Partial Differ. Equ., 27, 436-446 (2011) · Zbl 1211.65110
[19] Dai, W.; Tzou, D. Y., A fourth-order compact finite difference scheme for solving an N-carrier system with Neumann boundary conditions, Numer. Methods Partial Differ. Equ., 25, 274-289 (2010) · Zbl 1189.65192
[20] Debussche, A.; Faou, E., Modified energy for split-step methods applied to the linear Schrödinger equations, SIAM J. Numer. Anal., 47, 3705-3719 (2009) · Zbl 1209.65137
[21] Dehghan, M.; Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients, Comput. Phys. Commun., 181, 43-51 (2010) · Zbl 1206.65207
[22] Dehghan, M.; Mohebbi, A.; Asgari, Z., Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algorithms, 52, 523-540 (2009) · Zbl 1180.65114
[23] Dehghan, M.; Mirzaei, D., Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method, Int. J. Numer. Methods Eng., 76, 501-520 (2008) · Zbl 1195.81007
[24] Dehghan, M.; Mirzaei, D., The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrodinger equation, Eng. Anal. Boundary Elem., 32, 747-756 (2008) · Zbl 1244.65139
[25] Dehghan, M.; Taleei, A., Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method, Numer. Methods Partial Differ. Equ., 26, 979-992 (2010) · Zbl 1195.65137
[26] Gao, Z.; Xie, S., Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61, 593-614 (2011) · Zbl 1221.65220
[27] Gardner, L. R.T.; Gardner, G. A.; Zaki, S. I.; El Sahrawi, Z., B-spline finite element studies of the non-linear Schrödinger equation, Comput. Methods Appl. Mech. Eng., 108, 303-318 (1993) · Zbl 0842.65083
[28] Glassey, R. T., Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp., 58, 83-102 (1992) · Zbl 0746.65066
[29] Glassey, R. T., On the blowing up of solutions to the Cauchy problem for nonlinear Schröinger equations, J. Math. Phys., 18, 1794-1797 (1977) · Zbl 0372.35009
[31] Gustafsson, B.; Mossberg, E., Time compact high order difference methods for wave propagation, SIAM J. Sci. Comput., 26, 259-271 (2004) · Zbl 1075.65112
[32] Gustafsson, B.; Wahlund, P., Time compact difference methods for wave propagation in discontinuous media, SIAM J. Sci. Comput., 26, 272-293 (2004) · Zbl 1077.65092
[33] Karakashian, O.; Makridakis, C., A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comput., 67, 479-499 (1998) · Zbl 0896.65068
[34] Karakashian, O.; Akrivis, G.; Dougalis, V., On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30, 377-400 (1993) · Zbl 0774.65091
[35] Kailath, T.; Sayed, A. H.; Hassibi, B., Linear Estimation (2000), Prentice Hall
[36] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[37] Liao, H.; Sun, Z., Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differ. Equ., 26, 37-60 (2010) · Zbl 1196.65154
[38] Liao, H.; Sun, Z., Error estimate of fourth-order compact scheme for linear Schrödinger equations, SIAM J. Numer. Anal., 47, 4381-4401 (2010) · Zbl 1208.65130
[39] Lubich, C., On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comput., 77, 2141-2153 (2008) · Zbl 1198.65186
[40] Makhankov, V. G., Dynamics of classical solitons (in non-integrable systems), Phys. Lett. C, 35, 1-128 (1978)
[41] Markowich, P. A.; Pietra, P.; Pohl, C., Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81, 595-630 (1999) · Zbl 0928.65109
[42] Mohebbia, A.; Dehghan, M., High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Model., 51, 537-549 (2010) · Zbl 1190.65126
[43] Mohebbia, A.; Dehghan, M., High-order compact solution of the one-dimensional heat and advection-diffusion equations, Appl. Math. Model., 34, 3071-3084 (2010) · Zbl 1201.65183
[44] Neuhauser, C.; Thalhammer, M., On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential, BIT, 49, 199-215 (2009) · Zbl 1162.65385
[45] Ohannes, K.; Charalambos, M., A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal., 36, 1779-1807 (1999) · Zbl 0934.65110
[46] Pathria, D.; Morris, J. L., Pseudo-spectral solution of nonlinear Schrödinger equations, J. Comput. Phys., 87, 108-125 (1990) · Zbl 0691.65090
[47] Subasi, M., On the finite difference schemes for the numerical solution of two dimensional Schrödinger equation, Numer. Methods Partial Differ. Equ., 18, 752-758 (2002) · Zbl 1014.65077
[48] Sulem, C.; Sulem, P. L., The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0928.35157
[49] Sun, Z., Compact difference schemes for heat equation with Neumann boundary conditions, Numer. Methods Partial Differ. Equ., 25, 1320-1341 (2009) · Zbl 1181.65115
[50] Thalhammer, M., High-order exponential operator splitting methods for timedependent Schrödinger equations, SIAM J. Numer. Anal., 46, 2022-2038 (2008) · Zbl 1170.65061
[51] Thalhammer, M.; Caliari, M.; Neuhauser, C., High-order time-splitting Hermite and Fourier spectral methods, J. Comput. Phys., 228, 822-832 (2009) · Zbl 1158.65340
[52] Wang, T.; Guo, B., Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension (in Chinese), Sci. Sin. Math., 41, 207-233 (2011) · Zbl 1488.65296
[53] Xie, S.; Li, G.; Yi, S., Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödnger equation, Comput. Methods Appl. Mech. Eng., 198, 1052-1060 (2009) · Zbl 1229.81011
[54] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205, 72-77 (2005) · Zbl 1072.65130
[55] Zakharov, V. E.; Synakh, V. S., The nature of self-focusing singularity, Sov. Phys. JETP, 41, 465-468 (1975)
[56] Zhang, F.; Pérez-Grarciz, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 165-177 (1995) · Zbl 0832.65136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.