×

Model-free stochastic collocation for an arbitrage-free implied volatility. I. (English) Zbl 1431.91400

Summary: This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap convexity adjustments with the interest rate swaptions smile. To conclude, we explore some limitations of the stochastic collocation technique.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Alefeld, G.; Potra, FA; Shi, Y., Algorithm 748: enclosing zeros of continuous functions, ACM Trans. Math. Softw. (TOMS), 21, 327-344 (1995) · Zbl 0888.65059
[2] Andreasen, J.; Huge, B., Volatility interpolation, Risk, 24, 76 (2011)
[3] Arneric, J.; Aljinović, Z.; Poklepović, T., Extraction of market expectations from risk-neutral density, J. Econ. Bus., 33, 235-256 (2015)
[4] Bahra, Bhupinder, Implied risk-neutral probability density functions from option prices, 201-226 (2007)
[5] Bates, DS, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options, Rev. Financ. Stud., 9, 69-107 (1996)
[6] Bliss, RR; Panigirtzoglou, N., Option-implied risk aversion estimates, J. Finance, 59, 407-446 (2004)
[7] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) · Zbl 1058.90049
[8] Carr, P., Lee, R.: Robust replication of volatility derivatives. Preprint (2008)
[9] Carr, P., Stanley, M., Madan, D.: Towards a theory of volatility trading. In: Reprinted in Option Pricing, Interest Rates, and Risk Management, Musiella, Jouini, Cvitanic, pp. 417-427. University Press (1998)
[10] Cheng, M.K.C.: A new framework to estimate the risk-neutral probability density functions embedded in options prices (10-181) (2010)
[11] Christoffersen, P.; Heston, S.; Jacobs, K., The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well, Manag. Sci., 55, 1914-1932 (2009) · Zbl 1232.91718
[12] Dougherty, RL; Edelman, AS; Hyman, JM, Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic hermite interpolation, Math. Comput., 52, 471-494 (1989) · Zbl 0693.41004
[13] Dupire, B., Pricing with a smile, Risk, 7, 18-20 (1994)
[14] Flint, E.; Maré, E., Estimating option-implied distributions in illiquid markets and implementing the ross recovery theorem, S. Afr. Actuar. J., 17, 1-28 (2017)
[15] Gander, W., On Halley’s iteration method, Am. Math. Month., 92, 131-134 (1985) · Zbl 0574.65041
[16] Gatheral, J., Lynch, M.: Lecture 1: Stochastic volatility and local volatility. Case Studies in Financial Modeling Notes, Courant Institute of Mathematical Sciences (2004)
[17] Good, I., The colleague matrix, a Chebyshev analogue of the companion matrix, Q. J. Math., 12, 61-68 (1961) · Zbl 0103.01003
[18] Grzelak, L.A.: The CLV framework—a fresh look at efficient pricing with smile. Browser Download This Paper (2016)
[19] Grzelak, LA; Oosterlee, CW, From arbitrage to arbitrage-free implied volatilities, J. Comput. Finance, 20, 31-49 (2017)
[20] Hagan, PS, Convexity conundrums: pricing CMS swaps, caps, and floors, Wilmott, 2003, 38-45 (2003) · doi:10.1002/wilm.42820030211
[21] Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. Wilmott magazine (2002)
[22] Hagan, PS; Kumar, D.; Lesniewski, A.; Woodward, D., Arbitrage-free SABR, Wilmott, 2014, 60-75 (2014)
[23] Heston, SL, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6, 327-343 (1993) · Zbl 1384.35131
[24] Hu, Z.; Kerkhof, J.; McCloud, P.; Wackertapp, J., Cutting edges using domain integration, Risk, 19, 95 (2006)
[25] Hunt, P., Kennedy, J.: Financial Derivatives in Theory and Practice. Wiley, New York (2004) · Zbl 1140.91045
[26] Huynh, HT, Accurate monotone cubic interpolation, SIAM J. Numer. Anal., 30, 57-100 (1993) · Zbl 0772.65004
[27] Hyman, JM, Accurate monotonicity preserving cubic interpolation, SIAM J. Sci. Stat. Comput., 4, 645-654 (1983) · Zbl 0533.65004
[28] Jäckel, Peter, Let’s Be Rational, Wilmott, 2015, 40-53 (2015)
[29] Jenkins, MA, Algorithm 493: zeros of a real polynomial [c2], ACM Trans. Math. Softw. (TOMS), 1, 178-189 (1975) · Zbl 0303.65040
[30] Kahalé, N., An arbitrage-free interpolation of volatilities, Risk, 17, 102-106 (2004)
[31] Floc’h, F.; Kennedy, G., Finite difference techniques for arbitrage-free SABR, J. Comput. Finance, 20, 51-79 (2017)
[32] Li, M.; Lee, K., An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility, Quant. Finance, 11, 1245-1269 (2011) · Zbl 1266.91118
[33] Lorentz, G.; Zeller, K., Degree of approximation by monotone polynomials I, J. Approx. Theory, 1, 501-504 (1968) · Zbl 0172.07901
[34] Malz, A.M.: A simple and reliable way to compute option-based risk-neutral distributions. FRB of New York Staff Report No. 677 (2014)
[35] Mathelin, L., Hussaini, M.Y.: A stochastic collocation algorithm for uncertainty analysis. NASA Contractor Report CR-2003-212153 (2004)
[36] Mercurio, F., Pallavicini, A.: Swaption skews and convexity adjustments. Banca IMI (2005)
[37] Mercurio, F., Pallavicini, A.: Smiling at convexity: bridging swaption skews and cms adjustments. Risk August, pp. 64-69 (2006)
[38] Moler, C., Cleve’s corner: roots-of polynomials, that is, MathWorks Newsl., 5, 8-9 (1991)
[39] Murray, K.; Müller, S.; Turlach, B., Fast and flexible methods for monotone polynomial fitting, J. Stat. Comput. Simul., 86, 2946-2966 (2016) · Zbl 07184776
[40] Nonweiler, TR, Algorithms: Algorithm 326: roots of low-order polynomial equations, Commun. ACM, 11, 269-270 (1968)
[41] Passow, E.; Roulier, JA, Monotone and convex spline interpolation, SIAM J. Numer. Anal., 14, 904-909 (1977) · Zbl 0378.41002
[42] Reznick, B., Some concrete aspects of Hilbert’s 17th problem, Contemp. Math., 253, 251-272 (2000) · Zbl 0972.11021
[43] Schumaker, LI, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal., 20, 854-864 (1983) · Zbl 0521.65009
[44] Syrdal, S.A.: A study of implied risk-neutral density functions in the Norwegian option market. Norges Bank working paper ANO 2002/13 (2002)
[45] Trefethen, L.N.: Six myths of polynomial interpolation and quadrature. Technical report, Mathematics Today (2011)
[46] Wolibner, W., Sur un polynôme d’interpolation, Colloquium Mathematicum, 2, 136-137 (1951) · Zbl 0043.01904
[47] Wystup, U.: FX Options and Structured Products. Wiley, New York (2015)
[48] Zeliade Systems: Quasi-explicit calibration of Gatheral’s SVI model. Technical report, Zeliade White Paper, Zeliade Systems (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.