×

An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility. (English) Zbl 1266.91118

Summary: A new successive over-relaxation method to compute the Black-Scholes implied volatility is introduced. Properties of the new method are fully analysed, including global well-definedness, local convergence, as well as global convergence. Quadratic order of convergence is achieved by either a dynamic relaxation or transformation of sequence technique. The method is further enhanced by introducing a rational approximation on initial values. Numerical implementation shows that uniformly in a very large domain, the new method converges to the true implied volatility with very few iterations. Overall, the new method achieves a very good combination of efficiency, accuracy and robustness.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bachelier L, Ann. Ecole Normale Superiure 17 pp 21– (1900)
[2] Bharadia MA, Adv. Futures Options Res. 8 pp 15– (1996)
[3] DOI: 10.1086/260062 · Zbl 1092.91524 · doi:10.1086/260062
[4] DOI: 10.2469/faj.v44.n5.80 · doi:10.2469/faj.v44.n5.80
[5] DOI: 10.1111/1540-6261.00544 · doi:10.1111/1540-6261.00544
[6] DOI: 10.1111/j.1540-6288.2001.tb00021.x · doi:10.1111/j.1540-6288.2001.tb00021.x
[7] Chance DM, Risk 6 pp 60– (1993)
[8] DOI: 10.1111/j.1540-6288.1996.tb00900.x · doi:10.1111/j.1540-6288.1996.tb00900.x
[9] DOI: 10.1016/j.jedc.2003.06.002 · Zbl 1201.91195 · doi:10.1016/j.jedc.2003.06.002
[10] DOI: 10.1016/j.physa.2006.03.019 · doi:10.1016/j.physa.2006.03.019
[11] DOI: 10.1016/0378-4266(95)00014-3 · doi:10.1016/0378-4266(95)00014-3
[12] Corrado CJ, Risk 7 pp 49– (1996)
[13] DOI: 10.2307/2326357 · doi:10.2307/2326357
[14] DOI: 10.2307/2330330 · doi:10.2307/2330330
[15] DOI: 10.1016/0304-405X(79)90022-9 · doi:10.1016/0304-405X(79)90022-9
[16] DOI: 10.1093/rfs/6.2.327 · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[17] DOI: 10.1287/mnsc.33.3.347 · doi:10.1287/mnsc.33.3.347
[18] Isaacson E, Analysis of Numerical Methods (1994)
[19] Jäckel P, Wilmott pp 60– (2006)
[20] DOI: 10.1111/j.1540-6288.2006.00158.x · doi:10.1111/j.1540-6288.2006.00158.x
[21] DOI: 10.2307/2326608 · doi:10.2307/2326608
[22] DOI: 10.1016/j.ejor.2006.12.028 · Zbl 1137.91459 · doi:10.1016/j.ejor.2006.12.028
[23] DOI: 10.1002/fut.20348 · doi:10.1002/fut.20348
[24] DOI: 10.2307/2327127 · doi:10.2307/2327127
[25] DOI: 10.2307/2326358 · doi:10.2307/2326358
[26] DOI: 10.2307/3003143 · doi:10.2307/3003143
[27] DOI: 10.1016/0304-405X(76)90022-2 · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[28] Musiela M, Martingale Methods In Financial Modelling,, 2. ed. (2005)
[29] Nash, SG. 1990.A History of Scientific Computing, 180–194. New York: ACM Press.
[30] Nelder JA, Comput. J. 7 pp 308– (1965) · Zbl 0229.65053 · doi:10.1093/comjnl/7.4.308
[31] Press WH, Numerical Recipes in C: The Art of Scientific Computing (1992)
[32] DOI: 10.1111/j.1467-9965.2007.00326.x · Zbl 1138.91479 · doi:10.1111/j.1467-9965.2007.00326.x
[33] DOI: 10.2307/2326355 · doi:10.2307/2326355
[34] Sidi A, Practical Extrapolation Methods: Theory and Applications (2002)
[35] Stoll HR, J. Financ. 31 pp 319– (1969)
[36] DOI: 10.1090/S0002-9947-1954-0059635-7 · doi:10.1090/S0002-9947-1954-0059635-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.