×

The bound on chaos for closed strings in Anti-de Sitter black hole backgrounds. (English) Zbl 1431.83167

Summary: We perform a systematic study of the maximum Lyapunov exponent values \(\lambda\) for the motion of classical closed strings in Anti-de Sitter black hole geometries with spherical, planar and hyperbolic horizons. Analytical estimates from the linearized variational equations together with numerical integrations predict the bulk Lyapunov exponent value as \(\lambda \approx 2 \pi Tn\), where \(n\) is the winding number of the string. The celebrated bound on chaos stating that \(\lambda \leq 2 \pi T\) is thus systematically modified for winding strings in the bulk. Within gauge/string duality, such strings apparently correspond to complicated operators which either do not move on Regge trajectories, or move on subleading trajectories with an unusual slope. Depending on the energy scale, the out-of-time-ordered correlation functions of these operators may still obey the bound \(2 \pi T\), or they may violate it like the bulk exponent. We do not know exactly why the bound on chaos can be modified but the indication from the gauge/string dual viewpoint is that the correlation functions of the dual gauge operators never factorize and thus the original derivation of the bound on chaos does not apply.

MSC:

83E30 String and superstring theories in gravitational theory
83C57 Black holes
81Q50 Quantum chaos
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Maldacena, J.; Shenker, Sh; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[2] Sekino, Y.; Susskind, L., Fast scramblers, JHEP, 10, 065 (2008) · doi:10.1088/1126-6708/2008/10/065
[3] Lashkari, N.; Stanford, D.; Hastings, M.; Osborne, T.; Hayden, P., Towards the fast scrambling conjecture, JHEP, 04, 022 (2013) · Zbl 1342.81374 · doi:10.1007/JHEP04(2013)022
[4] Shenker, Sh; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[5] Roberts, Da; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[6] Shenker, Sh; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132 (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[7] J. Polchinski, Black hole S matrix, arXiv:1505.08108 [INSPIRE]. · Zbl 1358.83057
[8] Scaffidi, T.; Altman, E., Chaos in a classical limit of the Sachdev-Ye-Kitaev model, Phys. Rev., B 100, 155128 (2019) · doi:10.1103/PhysRevB.100.155128
[9] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[10] O. Parcolet and A. Georges, Non-Fermi liquid regime of a doped Mott insulator, Phys. Rev.B 59 (1998) 5341 [cond-mat/9806119].
[11] A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
[12] A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
[13] Marcus, E.; Vandoren, S., A new class of SYK-like models with maximal chaos, JHEP, 01, 166 (2019) · Zbl 1409.81127 · doi:10.1007/JHEP01(2019)166
[14] Fitzpatrick, Al; Kaplan, J., A quantum correction to chaos, JHEP, 05, 070 (2016) · Zbl 1388.83238 · doi:10.1007/JHEP05(2016)070
[15] K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole horizon, Phys. Rev.D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE].
[16] Dalui, S.; Majhi, Br; Mishra, P., Presence of horizon makes particle motion chaotic, Phys. Lett., B 788, 486 (2019) · doi:10.1016/j.physletb.2018.11.050
[17] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev. Lett.120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].
[18] David, Jr; Khetrapal, S.; Kumar, Sp, Local quenches and quantum chaos from perturbations, JHEP, 10, 156 (2017) · Zbl 1383.81093 · doi:10.1007/JHEP10(2017)156
[19] P. Basu and L.A. Pando Zayas, Analytic nonintegrability in string theory, Phys. Rev.D 84 (2011) 046006 [arXiv:1105.2540] [INSPIRE].
[20] Stepanchuk, A.; Tseytlin, Aa, On (non)integrability of classical strings in p-brane backgrounds, J. Phys., A 46, 125401 (2013) · Zbl 1267.81260
[21] Y. Chervonyi and O. Lunin, (Non)-integrability of geodesics in D-brane backgrounds, JHEP02 (2014) 061 [arXiv:1311.1521] [INSPIRE]. · Zbl 1388.83412
[22] C. Núñez, J.M. Penín, D. Roychowdhury and J. Van Gorsel, The non-integrability of strings in massive type IIA and their holographic duals, JHEP06 (2018) 078 [arXiv:1802.04269] [INSPIRE]. · Zbl 1395.81191
[23] Giataganas, D.; Pando Zayas, La; Zoubos, K., On marginal deformations and non-integrability, JHEP, 01, 129 (2014) · doi:10.1007/JHEP01(2014)129
[24] Beisert, N., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys., 99, 3 (2012) · Zbl 1268.81126 · doi:10.1007/s11005-011-0529-2
[25] A.V. Frolov and A.L. Larsen, Chaotic scattering and capture of strings by a black hole, Class. Quant. Grav.16 (1999) 3717 [gr-qc/9908039] [INSPIRE]. · Zbl 0939.83057
[26] Pando Zayas, La; Terrero-Escalante, Ca, Chaos in the gauge/gravity correspondence, JHEP, 09, 094 (2010) · Zbl 1291.81343 · doi:10.1007/JHEP09(2010)094
[27] Basu, P.; Pando Zayas, La, Chaos rules out integrability of strings on AdS_5× T^1,1, Phys. Lett., B 700, 243 (2011) · doi:10.1016/j.physletb.2011.04.063
[28] Basu, P.; Das, D.; Ghosh, A., Integrability lost: Chaotic dynamics of classical strings on a confining holographic background, Phys. Lett., B 699, 388 (2011) · doi:10.1016/j.physletb.2011.04.027
[29] P. Basu, P. Chaturvedi and P. Samantray, Chaotic dynamics of strings in charged black hole backgrounds, Phys. Rev.D 95 (2017) 066014 [arXiv:1607.04466] [INSPIRE].
[30] Asano, Y.; Kawai, D.; Kyono, H.; Yoshida, K., Chaotic strings in a near Penrose limit of AdS_5× T^1,1, JHEP, 08, 060 (2015) · Zbl 1388.81471 · doi:10.1007/JHEP08(2015)060
[31] Asano, Y.; Kyono, H.; Yoshida, K., Melnikov’s method in string theory, JHEP, 09, 103 (2016) · Zbl 1390.83319 · doi:10.1007/JHEP09(2016)103
[32] Giataganas, D.; Sfetsos, K., Non-integrability in non-relativistic theories, JHEP, 06, 018 (2014) · doi:10.1007/JHEP06(2014)018
[33] T. Ishii, K. Murata and K. Yoshida, Fate of chaotic strings in a confining geometry, Phys. Rev.D 95 (2017) 066019 [arXiv:1610.05833] [INSPIRE].
[34] R.B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE]. · Zbl 0873.53073
[35] Brill, Dieter R.; Louko, Jorma; Peldán, Peter, Thermodynamics of(3+1)-dimensional black holes with toroidal or higher genus horizons, Physical Review D, 56, 6, 3600-3610 (1997) · doi:10.1103/PhysRevD.56.3600
[36] L. Vanzo, Black holes with unusual topology, Phys. Rev.D 56 (1997) 6475 [gr-qc/9705004] [INSPIRE].
[37] Birmingham, D., Topological black holes in anti-de Sitter space, Class. Quant. Grav., 16, 1197 (1999) · Zbl 0933.83025 · doi:10.1088/0264-9381/16/4/009
[38] R.B. Mann, Topological black holes — outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE]. · Zbl 0907.53064
[39] W.L. Smith and R.B. Mann, Formation of topological black holes from gravitational collapse, Phys. Rev.D 56 (1997) 4942 [gr-qc/9703007] [INSPIRE].
[40] Ong, Yc, Hawking evaporation time scale of topological black Holes in anti-de Sitter spacetime, Nucl. Phys., B 903, 387 (2016) · Zbl 1332.83062 · doi:10.1016/j.nuclphysb.2016.01.005
[41] Chen, Y.; Teo, E., Black holes with bottle-shaped horizons, Phys. Rev., D 93, 124028 (2016)
[42] Johnson, Cv; Rosso, F., Holographic heat engines, entanglement entropy and renormalization group flow, Class. Quant. Grav., 36, 015019 (2019) · Zbl 1475.83071 · doi:10.1088/1361-6382/aaf1f1
[43] Emparan, R., AdS/CFT duals of topological black holes and the entropy of zero-energy states, JHEP, 06, 036 (1999) · Zbl 0951.83021 · doi:10.1088/1126-6708/1999/06/036
[44] Larsen, Al, Chaotic string-capture by black hole, Class. Quant. Grav., 11, 1201 (1994) · doi:10.1088/0264-9381/11/5/008
[45] A.E. Motter, Relativistic chaos is coordinate invariant, Phys. Rev. Lett.91 (2003) 231101 [gr-qc/0305020] [INSPIRE].
[46] Balazs, Nl; Voros, A., Chaos on the pseudosphere, Phys. Rept., 143, 109 (1986) · doi:10.1016/0370-1573(86)90159-6
[47] Gubser, Ss; Klebanov, Ir; Polyakov, Am, A semi-classical limit of the gauge/string correspondence, Nucl. Phys., B 636, 99 (2002) · Zbl 0996.81076 · doi:10.1016/S0550-3213(02)00373-5
[48] De Vega, Hj; Egusquiza, Il, Planetoid string solutions in 3 + 1 axissymmetric spaces, Phys. Rev., D 54, 7513 (1996)
[49] Brower, Rc; Polchinski, J.; Strassler, Mj; Tan, C-I, The pomeron and gauge/string duality, JHEP, 12, 005 (2007) · Zbl 1246.81224 · doi:10.1088/1126-6708/2007/12/005
[50] Giataganas, D.; Zoubos, K., Non-integrability and chaos with unquenched flavor, JHEP, 10, 042 (2017) · Zbl 1383.81216 · doi:10.1007/JHEP10(2017)042
[51] Perlmutter, E., Bounding the space of holographic CFTs with chaos, JHEP, 10, 069 (2016) · Zbl 1390.83128 · doi:10.1007/JHEP10(2016)069
[52] P. Basu and K. Jaswin, Higher point OTOCs and the bound on chaos, arXiv:1809.05331 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.