×

Monodromy relations from twisted homology. (English) Zbl 1431.83163

Summary: We reformulate the monodromy relations of open-string scattering amplitudes as boundary terms of twisted homologies on the configuration spaces of Riemann surfaces of arbitrary genus. This allows us to write explicit linear relations involving loop integrands of open-string theories for any number of external particles and, for the first time, to arbitrary genus. In the non-planar sector, these relations contain seemingly unphysical contributions, which we argue clarify mismatches in previous literature. The text is mostly self-contained and presents a concise introduction to twisted homologies. As a result of this powerful formulation, we can propose estimates on the number of independent loop integrands based on Euler characteristics of the relevant configuration spaces, leading to a higher-genus generalization of the famous \((n-3)!\) result at genus zero.

MSC:

83E30 String and superstring theories in gravitational theory
81V73 Bosonic systems in quantum theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
81U05 \(2\)-body potential quantum scattering theory
53Z05 Applications of differential geometry to physics

References:

[1] Plahte, E., Symmetry properties of dual tree-graph n-point amplitudes, Nuovo Cim., A 66, 713 (1970) · doi:10.1007/BF02824716
[2] Bjerrum-Bohr, Nej; Damgaard, Ph; Vanhove, P., Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett., 103, 161602 (2009) · doi:10.1103/PhysRevLett.103.161602
[3] Bjerrum-Bohr, Nej; Damgaard, Ph; Sondergaard, T.; Vanhove, P., Monodromy and Jacobi-like Relations for Color-Ordered Amplitudes, JHEP, 06, 003 (2010) · Zbl 1290.83015 · doi:10.1007/JHEP06(2010)003
[4] S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE]. · Zbl 1284.81245
[5] Kawai, H.; Lewellen, Dc; Tye, Shh, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys., B 269, 1 (1986) · doi:10.1016/0550-3213(86)90362-7
[6] Bern, Z.; Carrasco, Jjm; Johansson, H., New Relations for Gauge-Theory Amplitudes, Phys. Rev., D 78, 085011 (2008)
[7] Bern, Z.; Carrasco, Jjm; Johansson, H., Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett., 105, 061602 (2010) · doi:10.1103/PhysRevLett.105.061602
[8] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE]. · Zbl 1520.81124
[9] Mizera, S., Combinatorics and Topology of Kawai-Lewellen-Tye Relations, JHEP, 08, 097 (2017) · Zbl 1381.83126 · doi:10.1007/JHEP08(2017)097
[10] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M_0,n (R), Ann. Sci. Éc. Norm. Supér.42 (2009) 371 [math/0606419]. · Zbl 1216.11079
[11] F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
[12] F. Brown and C. Dupont, Single-valued integration and double copy, arXiv:1810.07682 [INSPIRE]. · Zbl 1484.14043
[13] Kita, M.; Yoshida, M., Intersection Theory for Twisted Cycles, Math. Nachr., 166, 287 (1994) · Zbl 0847.32043 · doi:10.1002/mana.19941660122
[14] Deligne, P.; Mostow, G., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHÉS, 63, 5 (1986) · Zbl 0615.22008 · doi:10.1007/BF02831622
[15] Cho, K.; Matsumoto, K., Intersection theory for twisted cohomologies and twisted Riemann’s period relations I, Nagoya Math. J., 139, 67 (1995) · Zbl 0856.32015 · doi:10.1017/S0027763000005304
[16] S. Mizera, Aspects of Scattering Amplitudes and Moduli Space Localization, Ph.D. Thesis, Perimeter Institute for Theoretical Physics, Waterloo Canada (2019) [INSPIRE]. · Zbl 1457.81067
[17] A.J. Hanson and J.-P. Sha, A contour integral representation for the dual five-point function and a symmetry of the genus-4 surface in R^6 , J. Phys.A 39 (2006) 2509 [math-ph/0510064] [INSPIRE]. · Zbl 1084.81060
[18] D. Gaiotto and J. Lamy-Poirier, Irregular Singularities in the H^+WZW Model, arXiv:1301.5342 [INSPIRE].
[19] Witten, E., The Feynman iE in String Theory, JHEP, 04, 055 (2015) · Zbl 1388.81610 · doi:10.1007/JHEP04(2015)055
[20] F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, arXiv:1910.01107 [INSPIRE]. · Zbl 1483.81117
[21] Verlinde, Ep; Verlinde, Hl, Chiral Bosonization, Determinants and the String Partition Function, Nucl. Phys., B 288, 357 (1987) · doi:10.1016/0550-3213(87)90219-7
[22] D’Hoker, E.; Phong, Dh, The Geometry of String Perturbation Theory, Rev. Mod. Phys., 60, 917 (1988) · doi:10.1103/RevModPhys.60.917
[23] D’Hoker, E.; Phong, Dh, Conformal Scalar Fields and Chiral Splitting on SuperRiemann Surfaces, Commun. Math. Phys., 125, 469 (1989) · Zbl 0698.58008 · doi:10.1007/BF01218413
[24] Aomoto, K., On the complex Selberg integral, Quart. J. Math., 38, 385 (1987) · Zbl 0639.33002 · doi:10.1093/qmath/38.4.385
[25] Aomoto, K., Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan, 39, 191 (1987) · Zbl 0619.32010 · doi:10.2969/jmsj/03920191
[26] Donagi, R.; Witten, E., Supermoduli Space Is Not Projected, Proc. Symp. Pure Math., 90, 19 (2015) · Zbl 1356.14021 · doi:10.1090/pspum/090/01525
[27] Sen, A.; Witten, E., Filling the gaps with PCO’s, JHEP, 09, 004 (2015) · Zbl 1388.81889 · doi:10.1007/JHEP09(2015)004
[28] Berkovits, N., Super Poincaŕe covariant quantization of the superstring, JHEP, 04, 018 (2000) · Zbl 0959.81065 · doi:10.1088/1126-6708/2000/04/018
[29] Berkovits, N.; Nekrasov, N., Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP, 12, 029 (2006) · Zbl 1226.81159 · doi:10.1088/1126-6708/2006/12/029
[30] Tourkine, P.; Vanhove, P., Higher-loop amplitude monodromy relations in string and gauge theory, Phys. Rev. Lett., 117, 211601 (2016) · doi:10.1103/PhysRevLett.117.211601
[31] Hohenegger, S.; Stieberger, S., Monodromy Relations in Higher-Loop String Amplitudes, Nucl. Phys., B 925, 63 (2017) · Zbl 1375.81202 · doi:10.1016/j.nuclphysb.2017.09.020
[32] Ochirov, A.; Tourkine, P.; Vanhove, P., One-loop monodromy relations on single cuts, JHEP, 10, 105 (2017) · Zbl 1383.81327 · doi:10.1007/JHEP10(2017)105
[33] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic Feynman integrals and pure functions, JHEP, 01, 023 (2019) · Zbl 1409.81162 · doi:10.1007/JHEP01(2019)023
[34] P. Vanhove, Feynman integrals, toric geometry and mirror symmetry, in Proceedings of KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, Zeuthen Germany (2017), pg. 415 [arXiv:1807.11466]. · Zbl 1454.81150
[35] C. Bogner, S. Müller-Stach and S. Weinzierl, The unequal mass sunrise integral expressed through iterated integrals on \(\overline{\mathcal{M}}_1,3\), arXiv:1907.01251 [INSPIRE]. · Zbl 1503.81031
[36] Mastrolia, P.; Mizera, S., Feynman Integrals and Intersection Theory, JHEP, 02, 139 (2019) · Zbl 1411.81093 · doi:10.1007/JHEP02(2019)139
[37] Mizera, S., Scattering Amplitudes from Intersection Theory, Phys. Rev. Lett., 120, 141602 (2018) · doi:10.1103/PhysRevLett.120.141602
[38] Steenrod, Ne, Homology With Local Coefficients, Ann. Math., 44, 610 (1943) · Zbl 0061.40901 · doi:10.2307/1969099
[39] Aomoto, K., On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo, 27, 49 (1977) · Zbl 0384.35045
[40] Aomoto, K.; Kita, M., Theory of Hypergeometric Functions, Springer Monographs in Mathematics (2011), Tokyo Japan: Springer, Tokyo Japan · Zbl 1229.33001
[41] Yoshida, M., Aspects of Mathematics. Vol. 32: Hypergeometric functions, my love: modular interpretations of configuration spaces (2013), New York U.S.A: Springer Science & Business Media, New York U.S.A
[42] Kleiss, R.; Kuijf, H., Multi-Gluon Cross-sections and Five Jet Production at Hadron Colliders, Nucl. Phys., B 312, 616 (1989) · doi:10.1016/0550-3213(89)90574-9
[43] Feng, B.; Huang, R.; Jia, Y., Gauge Amplitude Identities by On-shell Recursion Relation in S-matrix Program, Phys. Lett., B 695, 350 (2011) · doi:10.1016/j.physletb.2010.11.011
[44] Aomoto, K., On vanishing of cohomology attached to certain many valued meromorphic functions, J. Math. Soc. Japan, 27, 248 (1975) · Zbl 0301.32010 · doi:10.2969/jmsj/02720248
[45] Verlinde, Ep; Verlinde, Hl, Multiloop Calculations in Covariant Superstring Theory, Phys. Lett., B 192, 95 (1987) · doi:10.1016/0370-2693(87)91148-8
[46] P. Tourkine, On integrands and loop momentum in string and field theory, arXiv:1901.02432 [INSPIRE].
[47] Farkas, H.; Kra, I., Riemann Surfaces, Graduate Texts in Mathematics (2012), New York U.S.A: Springer, New York U.S.A · Zbl 0475.30001
[48] C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I. Pure spinors and superfield kinematics, JHEP08 (2019) 090 [arXiv:1812.10969] [INSPIRE]. · Zbl 1421.83118
[49] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[50] Boels, Rh; Isermann, Rs, New relations for scattering amplitudes in Yang-Mills theory at loop level, Phys. Rev., D 85, 021701 (2012)
[51] Harer, J.; Zagier, D., The Euler characteristic of the moduli space of curves, Invent. Math., 85, 457 (1986) · Zbl 0616.14017 · doi:10.1007/BF01390325
[52] Frellesvig, H., Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers, JHEP, 05, 153 (2019) · Zbl 1416.81198 · doi:10.1007/JHEP05(2019)153
[53] Frellesvig, H.; Gasparotto, F.; Mandal, Mk; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Vector Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett., 123, 201602 (2019) · doi:10.1103/PhysRevLett.123.201602
[54] Tourkine, P., Tropical Amplitudes, Annales Henri Poincaré, 18, 2199 (2017) · Zbl 1387.81292 · doi:10.1007/s00023-017-0560-7
[55] Vanhove, P., The physics and the mixed Hodge structure of Feynman integrals, Proc. Symp. Pure Math., 88, 161 (2014) · Zbl 1321.81023 · doi:10.1090/pspum/088/01455
[56] Amini, O.; Bloch, S.; Gil, Jib; Fresán, J., Feynman Amplitudes and Limits of Heights, Izv. Math., 80, 813 (2016) · Zbl 1354.32012 · doi:10.1070/IM8492
[57] Bern, Z.; Davies, S.; Dennen, T., The Ultraviolet Structure of Half-Maximal Supergravity with Matter Multiplets at Two and Three Loops, Phys. Rev., D 88, 065007 (2013)
[58] Bern, Z.; Davies, S.; Dennen, T., Enhanced ultraviolet cancellations in \(\mathcal{N} = 5\) supergravity at four loops, Phys. Rev., D 90, 105011 (2014)
[59] Bern, Z.; Carrasco, Jj; Chen, W-M; Johansson, H.; Roiban, R., Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes, Phys. Rev. Lett., 118, 181602 (2017) · doi:10.1103/PhysRevLett.118.181602
[60] Bern, Z., Ultraviolet Properties of \(\mathcal{N} = 8\) Supergravity at Five Loops, Phys. Rev., D 98, 086021 (2018)
[61] Boels, Rh; Isermann, Rs, Yang-Mills amplitude relations at loop level from non-adjacent BCFW shifts, JHEP, 03, 051 (2012) · Zbl 1309.81317 · doi:10.1007/JHEP03(2012)051
[62] Du, Y-J; Lüo, H., On General BCJ Relation at One-loop Level in Yang-Mills Theory, JHEP, 01, 129 (2013) · Zbl 1342.81277 · doi:10.1007/JHEP01(2013)129
[63] Feng, B.; Jia, Y.; Huang, R., Relations of loop partial amplitudes in gauge theory by Unitarity cut method, Nucl. Phys., B 854, 243 (2012) · Zbl 1229.81304 · doi:10.1016/j.nuclphysb.2011.08.024
[64] Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R., Explicit Formulae for Yang-Mills-Einstein Amplitudes from the Double Copy, JHEP, 07, 002 (2017) · Zbl 1380.83280 · doi:10.1007/JHEP07(2017)002
[65] Mafra, Cr; Schlotterer, O., Double-Copy Structure of One-Loop Open-String Amplitudes, Phys. Rev. Lett., 121, 011601 (2018) · doi:10.1103/PhysRevLett.121.011601
[66] Broedel, J.; Schlotterer, O.; Zerbini, F., From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, JHEP, 01, 155 (2019) · Zbl 1409.83178 · doi:10.1007/JHEP01(2019)155
[67] J.D. Fay, Lecture Notes in Mathematics. Vol. 352: Theta functions on Riemann surfaces, Springer, Berlin Germany (1973). · Zbl 0281.30013
[68] C.R. Mafra and O. Schlotterer, One-loop open-string integrals from differential equations: all-order α^t-expansions at n points, arXiv:1908.10830 [INSPIRE]. · Zbl 1435.83183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.