×

Monodromy and Jacobi-like relations for color-ordered amplitudes. (English) Zbl 1290.83015

Summary: We discuss monodromy relations between different color-ordered amplitudes in gauge theories. We show that Jacobi-like relations of Bern, Carrasco and Johansson can be introduced in a manner that is compatible with these monodromy relations. The Jacobi-like relations are not the most general set of equations that satisfy this criterion. Applications to supergravity amplitudes follow straightforwardly through the KLT-relations. We explicitly show how the tree-level relations give rise to non-trivial identities at loop level.

MSC:

83C45 Quantization of the gravitational field
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
83E50 Supergravity
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)

References:

[1] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys.B 269 (1986) 1 [SPIRES]. · doi:10.1016/0550-3213(86)90362-7
[2] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge Univ. Press, Cambridge U.K. (1987) [SPIRES]. · Zbl 0619.53002
[3] Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel.5 (2002) 5 [gr-qc/0206071] [SPIRES]. · Zbl 1023.83010
[4] Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett.B 457 (1999) 23 [hep-th/9904026] [SPIRES].
[5] Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett.84 (2000) 3531 [hep-th/9912033] [SPIRES]. · doi:10.1103/PhysRevLett.84.3531
[6] N.E.J. Bjerrum-Bohr, String theory and the mapping of gravity into gauge theory, Phys. Lett.B 560 (2003) 98 [hep-th/0302131] [SPIRES]. · Zbl 1059.81145
[7] N.E.J. Bjerrum Bohr, Generalized string theory mapping relations between gravity and gauge theory, Nucl. Phys.B 673 (2003) 41 [hep-th/0305062] [SPIRES]. · Zbl 1058.81634 · doi:10.1016/j.nuclphysb.2003.09.017
[8] N.E.J. Bjerrum-Bohr and K. Risager, String theory and the KLT-relations between gravity and gauge theory including external matter, Phys. Rev.D 70 (2004) 086011 [hep-th/0407085] [SPIRES].
[9] S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett.B 652 (2007) 128 [arXiv:0706.1778] [SPIRES]. · Zbl 1248.83026
[10] M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP09 (2008) 063 [arXiv:0805.0757] [SPIRES]. · Zbl 1245.81083 · doi:10.1088/1126-6708/2008/09/063
[11] N.E.J. Bjerrum-Bohr and O.T. Engelund, Gravitino Interactions from Yang-Mills Theory, Phys. Rev.D 81 (2010) 105009 [arXiv:1002.2279] [SPIRES].
[12] N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett.103 (2009) 161602 [arXiv:0907.1425] [SPIRES]. · doi:10.1103/PhysRevLett.103.161602
[13] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].
[14] D.-p. Zhu, Zeros In Scattering Amplitudes And The Structure Of Nonabelian Gauge heories, Phys. Rev.D 22 (1980) 2266 [SPIRES].
[15] T. Sondergaard, New Relations for Gauge-Theory Amplitudes with Matter, Nucl. Phys.B 821 (2009) 417 [arXiv:0903.5453] [SPIRES]. · Zbl 1196.81243 · doi:10.1016/j.nuclphysb.2009.07.002
[16] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at Hardon colliders, Nucl. Phys.B 312 (1989) 616 [SPIRES]. · doi:10.1016/0550-3213(89)90574-9
[17] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [SPIRES]. · doi:10.1016/S0550-3213(99)00809-3
[18] H. Tye and Y. Zhang, Dual Identities inside the Gluon and the Graviton Scattering Amplitudes, arXiv:1003.1732 [SPIRES]. · Zbl 1288.81150
[19] E. Plahte, Symmetry properties of dual tree-graph n-point amplitudes, Nuovo Cim.A 66 (1970) 713 [SPIRES]. · doi:10.1007/BF02824716
[20] V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys.B 240 (1984) 312 [SPIRES]. · doi:10.1016/0550-3213(84)90269-4
[21] R. Medina, F.T. Brandt and F.R. Machado, The open superstring 5-point amplitude revisited, JHEP07 (2002) 071 [hep-th/0208121] [SPIRES]. · doi:10.1088/1126-6708/2002/07/071
[22] S. Stieberger and T.R. Taylor, Complete Six-Gluon Disk Amplitude in Superstring Theory, Nucl. Phys.B 801 (2008) 128 [arXiv:0711.4354] [SPIRES]. · Zbl 1189.81190 · doi:10.1016/j.nuclphysb.2008.04.026
[23] S. Stieberger and T.R. Taylor, Supersymmetry Relations and MHV Amplitudes in Superstring Theory, Nucl. Phys.B 793 (2008) 83 [arXiv:0708.0574] [SPIRES]. · Zbl 1225.81103 · doi:10.1016/j.nuclphysb.2007.09.033
[24] S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev.D 74 (2006) 126007 [hep-th/0609175] [SPIRES].
[25] S. Stieberger and T.R. Taylor, Amplitude for N-gluon superstring scattering, Phys. Rev. Lett.97 (2006) 211601 [hep-th/0607184] [SPIRES]. · Zbl 1228.81272 · doi:10.1103/PhysRevLett.97.211601
[26] S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [SPIRES]. · Zbl 1288.81121
[27] R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP11 (2008) 015 [arXiv:0808.2598] [SPIRES]. · doi:10.1088/1126-6708/2008/11/015
[28] C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, arXiv:1002.4674 [SPIRES]. · Zbl 1291.81301
[29] R.H. Boels, D. Marmiroli and N.A. Obers, On-shell Recursion in String Theory, arXiv:1002.5029 [SPIRES]. · Zbl 1291.81297
[30] D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].
[31] N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP04 (2000) 018 [hep-th/0001035] [SPIRES]. · Zbl 0959.81065 · doi:10.1088/1126-6708/2000/04/018
[32] C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP01 (2010) 007 [arXiv:0909.5206] [SPIRES]. · Zbl 1269.81165 · doi:10.1007/JHEP01(2010)007
[33] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys.B 362 (1991) 389 [SPIRES]. · doi:10.1016/0550-3213(91)90567-H
[34] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[35] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [SPIRES]. · doi:10.1016/0550-3213(79)90234-7
[36] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [SPIRES]. · Zbl 1007.81512 · doi:10.1016/0550-3213(94)90398-0
[37] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES]. · doi:10.1016/0550-3213(94)00488-Z
[38] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202 · doi:10.1016/j.nuclphysb.2005.07.014
[39] M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [SPIRES]. · doi:10.1016/0370-1573(91)90091-Y
[40] Dixon, LJ; Soper, DE (ed.), Calculating scattering amplitudes efficiently (1996), Singapore
[41] F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES]. · Zbl 1325.81154
[42] Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys.322 (2007) 1587 [arXiv:0704.2798] [SPIRES]. · Zbl 1122.81077 · doi:10.1016/j.aop.2007.04.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.