×

Existence and concentration of positive solutions for \(p\)-fractional Schrödinger equations. (English) Zbl 1431.35222

Summary: We deal with the existence and concentration of positive solutions for the following \(p\)-fractional Schrödinger equation \[\varepsilon^{sp}(-\Delta )_p^su+V(x)|u|^{p-2}u=f(u)+\gamma |u|^{p^*_s-2}u \] in \(\mathbb{R}^N\), where \(\varepsilon >0\) is a small parameter, \(s\in (0, 1), p\in (1, \infty )\), \(N>sp, \gamma \in \{0, 1\}\), \(p^*_s=\frac{Np}{N-sp}\) is the fractional critical Sobolev exponent, \((-\Delta )_p^s\) is the fractional \(p\)-Laplacian operator, \(V\) is a continuous positive potential having a local minimum and \(f\) is a superlinear continuous function with subcritical growth. The main results are obtained by using penalization techniques and suitable variational arguments.

MSC:

35R11 Fractional partial differential equations
35J60 Nonlinear elliptic equations
35A15 Variational methods applied to PDEs
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Alves, Co; Do Ó, Jm; Souto, Mas, Local mountain-pass for a class of elliptic problems in \({\mathbb{R}}^N\) involving critical growth, Nonlinear Anal., 46, 495-510 (2001) · Zbl 1113.35323 · doi:10.1016/S0362-546X(00)00125-5
[2] Alves, Co; Figueiredo, Gm, Multiplicity of positive solutions for a quasilinear problem in \({\mathbb{R}}^N\) via penalization method, Adv. Nonlinear Stud., 5, 4, 551-572 (2005) · Zbl 1210.35086 · doi:10.1515/ans-2005-0405
[3] Alves, Co; Miyagaki, Oh, Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^N\) via penalization method, Calc. Var. Partial Differ. Equ., 55, 3, 19 (2016) · Zbl 1366.35212
[4] Ambrosetti, A.; Rabinowitz, Ph, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[5] Ambrosio, V., Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4), 196, 6, 2043-2062 (2017) · Zbl 1516.35450 · doi:10.1007/s10231-017-0652-5
[6] Ambrosio, V., Concentration phenomena for critical fractional Schrödinger systems, Commun. Pure Appl. Anal., 17, 5, 2085-2123 (2018) · Zbl 1394.35543 · doi:10.3934/cpaa.2018099
[7] Ambrosio, V.; Hajaiej, H., Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in \({\mathbb{R}}^N\), J. Dyn. Differ. Equ., 30, 3, 1119-1143 (2018) · Zbl 1401.35309 · doi:10.1007/s10884-017-9590-6
[8] Ambrosio, V.; Isernia, T., Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional \(p\)-Laplacian, Discrete Contin. Dyn. Syst., 38, 11, 5835-5881 (2018) · Zbl 06951275 · doi:10.3934/dcds.2018254
[9] Ambrosio, V.; Isernia, T., On the multiplicity and concentration for \(p\)-fractional Schrödinger equations, Appl. Math. Lett., 95, 13-22 (2019) · Zbl 1466.35353 · doi:10.1016/j.aml.2019.03.010
[10] Brasco, L.; Mosconi, S.; Squassina, M., Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differ. Equ., 55, 32 (2016) · Zbl 1350.46024 · doi:10.1007/s00526-016-0958-y
[11] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[12] Caffarelli, La; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[13] Dávila, J.; Del Pino, M.; Dipierro, S.; Valdinoci, E., Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8, 5, 1165-1235 (2015) · Zbl 1366.35215 · doi:10.2140/apde.2015.8.1165
[14] Del Pezzo, Lm; Quaas, A., A Hopf’s lemma and a strong minimum principle for the fractional \(p\)-Laplacian, J. Differ. Equ., 263, 1, 765-778 (2017) · Zbl 1362.35061 · doi:10.1016/j.jde.2017.02.051
[15] Del Pezzo, L.M., Quaas, A.: Spectrum of the fractional \(p\)-Laplacian in \({\mathbb{R}}^N\) and decay estimate for positive solutions of a Schrödinger equation. preprint arXiv:1812.00925 · Zbl 1439.35525
[16] Del Pino, M.; Felmer, Pl, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4, 121-137 (1996) · Zbl 0844.35032 · doi:10.1007/BF01189950
[17] Di Castro, A.; Kuusi, T.; Palatucci, G., Local behavior of fractional \(p\)-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 5, 1279-1299 (2016) · Zbl 1355.35192 · doi:10.1016/j.anihpc.2015.04.003
[18] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[19] Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^n \), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 15. Edizioni della Normale, Pisa (2017) · Zbl 1375.49001
[20] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 142, 1237-1262 (2012) · Zbl 1290.35308 · doi:10.1017/S0308210511000746
[21] Figueiredo, Gm; Furtado, M., Positive solutions for a quasilinear Schrödinger equation with critical growth, J. Dyn. Differ. Equ., 24, 1, 13-28 (2012) · Zbl 1244.35045 · doi:10.1007/s10884-011-9231-4
[22] Figueiredo, Gm; Siciliano, G., A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in \({\mathbb{R}}^N \), NoDEA, 23, 2, 22 (2016) · Zbl 1375.35599 · doi:10.1007/s00030-016-0355-4
[23] Fiscella, A.; Pucci, P., \(p\)-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35, 350-378 (2017) · Zbl 1372.35335 · doi:10.1016/j.nonrwa.2016.11.004
[24] Fiscella, A.; Pucci, P., Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17, 3, 429-456 (2017) · Zbl 1375.35180 · doi:10.1515/ans-2017-6021
[25] Franzina, G.; Palatucci, G., Fractional \(p\)-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5, 2, 373-386 (2014) · Zbl 1327.35286
[26] He, X.; Zou, W., Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differ. Equ., 55, 4, 39 (2016) · Zbl 1395.35193 · doi:10.1007/s00526-016-1045-0
[27] Iannizzotto, A.; Mosconi, S.; Squassina, M., Global Hölder regularity for the fractional \(p\)-Laplacian, Rev. Mat. Iberoam., 32, 1353-1392 (2016) · Zbl 1433.35447 · doi:10.4171/RMI/921
[28] Isernia, T., Positive solution for nonhomogeneous sublinear fractional equations in \(\mathbb{R}^N \), Complex Var. Elliptic Equ., 63, 5, 689-714 (2018) · Zbl 1402.35302 · doi:10.1080/17476933.2017.1332052
[29] Kuusi, T.; Palatucci, G., Recent Developments in Nonlocal Theory (2018), Berlin: De Gruyter, Berlin · Zbl 1398.47001
[30] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 4-6, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[31] Lions, Pl, The concentration-compactness principle in the calculus of variations. The limit case. Part I, Rev. Mat. Iberoam., 1, 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[32] Mawhin, J.; Molica Bisci, G., A Brezis-Nirenberg type result for a nonlocal fractional operator, J. Lond. Math. Soc. (2), 95, 1, 73-93 (2017) · Zbl 1398.35276 · doi:10.1112/jlms.12009
[33] Molica Bisci, G.; Rădulescu, V.; Servadei, R., Variational Methods for Nonlocal Fractional Problems, with a Foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1356.49003
[34] Mosconi, S.; Perera, K.; Squassina, M.; Yang, Y., The Brezis-Nirenberg problem for the fractional \(p\)-Laplacian, Calc. Var. Partial Differ. Equ., 55, 25 (2016) · Zbl 1361.35198 · doi:10.1007/s00526-016-1035-2
[35] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301 · doi:10.1002/cpa.3160130308
[36] Palatucci, G., The Dirichlet problem for the \(p\)-fractional Laplace equation, Nonlinear Anal., 177, 699-732 (2018) · Zbl 1404.35212 · doi:10.1016/j.na.2018.05.004
[37] Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50, 3-4, 799-829 (2014) · Zbl 1296.35064 · doi:10.1007/s00526-013-0656-y
[38] Pucci, P.; Xiang, M.; Zhang, B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R}}^N\), Calc. Var. Partial Differ. Equ., 54, 2785-2806 (2015) · Zbl 1329.35338 · doi:10.1007/s00526-015-0883-5
[39] Rabinowitz, P., On a class of nonlinear Schrödinger equations Z, Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[40] Secchi, S., Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^N \), J. Math. Phys., 54, 031501 (2013) · Zbl 1281.81034 · doi:10.1063/1.4793990
[41] Torres, C., Existence and symmetry result for fractional \(p\)-Laplacian in \({\mathbb{R}}^n \), Commun. Pure Appl. Anal., 16, 1, 99-113 (2017) · Zbl 1364.35426 · doi:10.3934/cpaa.2017004
[42] Willem, M., Minimax Theorems (1996), Basel: Birkhäuser, Basel · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.