×

On the planar Schrödinger-Poisson system with the axially symmetric potential. (English) Zbl 1431.35030

Summary: In this paper, we develop some new variational and analytic techniques to prove that the following planar Schrödinger-Poisson system
\[\begin{cases} -\Delta u + V(x) u + \phi u = f(u), & x \in \mathbb{R}^2, \\ \Delta \phi = u^2, & x \in \mathbb{R}^2, \end{cases}\]
admits a nontrivial solution and a ground state solution possessing the least energy in the axially symmetric functions space, where \(V(x)\) is axially symmetric. Our results improve and extend the ones in the case \(V = 1\) and \(f(u) = |u|^{p-2} u\) with \(2 < p < 6\). In particular, we use the assumption that \(2V(x) + \nabla V(x) \cdot x\) is bounded from below instead of the usually one that \(\lim_{|x| \to \infty} V(x) = 1\). Moreover, \(V(x)\) is even admitted to be unbounded.

MSC:

35J47 Second-order elliptic systems
35J61 Semilinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10, 391-404 (2008) · Zbl 1188.35171
[2] Azzollini, A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differ. Equ., 249, 1746-1763 (2010) · Zbl 1197.35096
[3] Azzollini, A.; Pomponio, A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, 90-108 (2008) · Zbl 1147.35091
[4] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11, 283-293 (1998) · Zbl 0926.35125
[5] Benci, V.; Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14, 409-420 (2002) · Zbl 1037.35075
[6] Benguria, R.; Brezis, H.; Lieb, E., The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79, 167-180 (1981) · Zbl 0478.49035
[7] Catto, I.; Lions, P., Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Commun. Partial Differ. Equ., 18, 1149-1159 (1993) · Zbl 0807.35116
[8] Cerami, G.; Vaira, J., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248, 521-543 (2010) · Zbl 1183.35109
[9] Chen, S. T.; Shi, J. P.; Tang, X. H., Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst., Ser. A, 39, 5867-5889 (2019) · Zbl 1425.35014
[10] Chen, S. T.; Tang, X. H., Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system, Discrete Contin. Dyn. Syst., Ser. B, 24, 4685-4702 (2019) · Zbl 1429.35062
[11] Chen, S. T.; Tang, X. H., Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9, 496-515 (2020) · Zbl 1422.35023
[12] Cingolani, S.; Weth, T., On the planar Schrödinger-Poisson system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 169-197 (2016) · Zbl 1331.35126
[13] D’Aprile, T.; Mugnai, D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. R. Soc. Edinb. A, 134, 893-906 (2004) · Zbl 1064.35182
[14] D’Aprile, T.; Wei, J. C., Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differ. Equ., 25, 105 (2006) · Zbl 1207.35129
[15] D’Aprile, T.; Wei, J., Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 5, 219-259 (2006) · Zbl 1150.35006
[16] D’Aprile, T.; Wei, J., On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37, 321-342 (2005) · Zbl 1096.35017
[17] Du, M.; Weth, T., Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30, 3492-3515 (2017) · Zbl 1384.35010
[18] He, X. M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62, 869-889 (2011) · Zbl 1258.35170
[19] He, X. M.; Zou, W. M., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53, Article 023702 pp. (2012) · Zbl 1274.81078
[20] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 1633-1659 (1997) · Zbl 0877.35091
[21] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(R^N\), Proc. R. Soc. Edinb. A, 129, 787-809 (1999) · Zbl 0935.35044
[22] Li, G. B.; Peng, S. J.; Yan, S. S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12, 1069-1092 (2010) · Zbl 1206.35082
[23] Lieb, E., Sharp constants in the Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. Math., 118, 349-374 (1983) · Zbl 0527.42011
[24] Lieb, E.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[25] Lieb, E. H., Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys., 53, 263-301 (1981) · Zbl 1114.81336
[26] Lions, P., Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109, 33-97 (1984) · Zbl 0618.35111
[27] Liu, Z. S.; Zhang, Z. T.; Huang, S. B., Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differ. Equ., 266, 5912-5941 (2019) · Zbl 1421.35156
[28] Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), x+248 · Zbl 0765.35001
[29] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, vol. III: Scattering Theory (1979), Academic Press: Academic Press New York · Zbl 0405.47007
[30] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037
[31] Stubbe, J., Bound states of two-dimensional Schrödinger-Newton equations, eprint
[32] Sun, J. J.; Ma, S. M., Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differ. Equ., 260, 2119-2149 (2016) · Zbl 1334.35044
[33] Tang, X. H., Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58, 715-728 (2015) · Zbl 1321.35055
[34] Tang, X. H.; Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56, 110 (2017) · Zbl 1376.35056
[35] Tang, X. H.; Chen, S. T., Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Discrete Contin. Dyn. Syst., Ser. A, 37, 4973-5002 (2017) · Zbl 1371.35051
[36] Tang, X. H.; Chen, S. T., Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions, Adv. Nonlinear Anal., 9, 413-437 (2020) · Zbl 1421.35068
[37] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24 (1996), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0856.49001
[38] Zhao, L.; Zhao, F., On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346, 155-169 (2008) · Zbl 1159.35017
[39] Zhang, J. J., The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55, Article 031507 pp. (2014) · Zbl 1286.81075
[40] Zhang, J. J.; Xu, Z. J.; Zou, W. M., Standing waves for nonlinear Schrödinger equations involving critical growth, J. Lond. Math. Soc., 90, 827-844 (2014) · Zbl 1317.35247
[41] Zhao, L. G.; Zhao, F. K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70, 2150-2164 (2009) · Zbl 1156.35374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.