×

Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem. (English) Zbl 1150.35006

The authors investigate the problem: \(\varepsilon^2\Delta v-v-\gamma_1Vv+f(v)=0\), \(\Delta V+\gamma_2v^2=0\) with \(v, V>0\) in \(\Omega\), and \(v=V=0\) on \(\partial\Omega,\) where \(\Omega\) is a smooth bounded domain in \(\subset \mathbb R^3\), \(\varepsilon,\;\gamma_1,\;\gamma_2\) are positive constants. The function \(f\in C^2(\mathbb R)\) is subject to the following conditions: \(f(t)\) vanishes for \(t\leq 0\), \(f(t)/t^3\) is non decreasing for \(t>0\), \(f(t)=O(t^p)\) as \(t\to\infty\) with \(3<p<5\), there exists a constant \(\theta>4\) such that \(0<\theta\int_0^tf(s)\,ds\leq t f(t)\) for \(t>0\), and the problem \(\Delta w-w+f(w)=0\) in \(\mathbb R^3\), \(w(0)=\max_{\mathbb R^3} w(x)\), \(\lim_{|x|\to\infty}w(x)=0\) has a unique positive non-degenerate solution.
This problem has a variational structure. Indeed, for every \(v\in H^1_0(\Omega)\) let \((-\Delta)^{-1}[v^2]\in H^1_0(\Omega)\) be the unique solution of the problem \(\Delta V+v^2=0\) in \(\Omega\), \(V=0\) on \(\partial\Omega\). Then the previous system can be written as \[ \varepsilon^2\Delta v-v-\gamma (-\Delta)^{-1}[v^2]v+f(v)=0,\;\;v>0\;\text{in}\;\Omega,\;v=0\;\text{on}\;\partial\Omega, \] with \(\gamma=\gamma_1\gamma_2\). Associated with this problem is the energy functional \[ J_\varepsilon[v]=\frac{1}{2}\int_\Omega(\varepsilon^2|\nabla v|^2+v^2)\,dx+\frac{\gamma}{4}\int_\Omega(-\Delta)^{-1}[v^2]v^2\,dx-\int_\Omega F(v)\,dx, \] with \(F(t)=\int_0^tf(s)\,ds.\) The main result is the following. For every \(\varepsilon>0\) there exists a least-energy solution \(v_\varepsilon\in H^1_0(\Omega)\). Furthermore, as \(\varepsilon\to 0\), \(v_\varepsilon\) develops a spike near the maxima of the mean curvature of \(\partial\Omega\); more precisely, there exists \(P_\varepsilon\in\Omega\) such that (i) \(v_\varepsilon=w(\frac{x-P_\varepsilon}{\varepsilon}) +o(1)\) uniformly in \(\Omega\), (ii) dist\((P_\varepsilon,\partial\Omega)=(1+o(1))\varepsilon\log\frac{1}{\varepsilon}\), (iii) for every sequence \(\varepsilon_n\to 0^+\), up to a subsequence, \(P_{\varepsilon_n}\rightarrow P_0\in\partial\Omega,\) where \(P_0\) is a point of maximum mean curvature of \(\partial\Omega\). The proof of this interesting result is based on the energy method.

MSC:

35B25 Singular perturbations in context of PDEs
35J60 Nonlinear elliptic equations
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
92C15 Developmental biology, pattern formation
92C40 Biochemistry, molecular biology

References:

[1] P. W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal. 196 (2002), 211-264. Zbl1010.47036 MR1943093 · Zbl 1010.47036 · doi:10.1016/S0022-1236(02)00013-7
[2] P. W. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999), 1-69. Zbl1157.35407 MR1667283 · Zbl 1157.35407
[3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), 283-293. Zbl0926.35125 MR1659454 · Zbl 0926.35125
[4] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561. Zbl0513.35007 MR677997 · Zbl 0513.35007 · doi:10.1007/BF01403504
[5] C. C. Chen and C. S. Lin, Uniqueness of the ground state solution of \(\Delta u + f(u) =0 \) in \(\mathbb{R}^N, N\geq 3\), Comm. Partial Differential Equations 16 (1991), 1549-1572. Zbl0753.35034 MR1132797 · Zbl 0753.35034 · doi:10.1080/03605309108820811
[6] G. M. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations 94 (2004), 1-31. Zbl1064.35180 MR2075433 · Zbl 1064.35180
[7] E. N. Dancer, Stable and finite Morse index solutions on \(\mathbb{R}^N\) or on bounded domains with small diffusion. II, Indiana Univ. Math. J. 53 (2004), 97-108. Zbl1183.35125 MR2048185 · Zbl 1183.35125 · doi:10.1512/iumj.2004.53.2354
[8] E. N. Dancer and S. Yan, Effect of the domain geometry on the existence of multipeak solutions for an elliptic problem, Topol. Methods Nonlinear Anal. 14 (1999), 1-38. Zbl0958.35054 MR1758878 · Zbl 0958.35054
[9] E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999), 241-262. Zbl0933.35070 MR1696122 · Zbl 0933.35070 · doi:10.2140/pjm.1999.189.241
[10] E. N. Dancer and S. Yan, Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 (1999), 1177-1212. Zbl0948.35055 MR1757072 · Zbl 0948.35055 · doi:10.1512/iumj.1999.48.1827
[11] E. N. Dancer and S. Yan, Peak solutions for an elliptic system of Fitzhugh-Nagumo type, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 679-709. Zbl1115.35039 MR2040640 · Zbl 1115.35039
[12] E. N. Dancer and S. Yan, On the profile of the changing-sign mountain pass solutions for an elliptic problem, Trans. Amer. Math. Soc. 354 (2002), 3573-3600. Zbl1109.35041 MR1911512 · Zbl 1109.35041 · doi:10.1090/S0002-9947-02-03026-X
[13] T. D’Aprile and D. Mugnai, Existence of solitary waves for the nonlinear Klein-Gordon Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893-906. Zbl1064.35182 MR2099569 · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[14] T. D’Aprile and J. Wei, Boundary concentration in radial solutions for a system of semilinear elliptic equations, J. London Math. Soc. (2), to appear. Zbl1165.35356 MR2269587 · Zbl 1165.35356 · doi:10.1112/S0024610706023027
[15] T. D’Aprile and J. Wei, Clustered solutions around harmonic centers to a coupled elliptic system, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zblpre05181994 MR2334995 · Zbl 1406.35053
[16] T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37 (2005), 321-342. Zbl1096.35017 MR2176935 · Zbl 1096.35017 · doi:10.1137/S0036141004442793
[17] T. D’Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations 25 (2006), 105-137. Zbl1207.35129 MR2183857 · Zbl 1207.35129 · doi:10.1007/s00526-005-0342-9
[18] M. Del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (1999), 883-898. Zbl0932.35080 MR1736974 · Zbl 0932.35080 · doi:10.1512/iumj.1999.48.1596
[19] M. Del Pino, P. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63-79. Zbl0942.35058 MR1742305 · Zbl 0942.35058 · doi:10.1137/S0036141098332834
[20] M. J. Esteban and P. L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 1-14. Zbl0506.35035 MR688279 · Zbl 0506.35035 · doi:10.1017/S0308210500031607
[21] H. Egnell, Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations, 98 (1992), 34-56. Zbl0778.35009 MR1168970 · Zbl 0778.35009 · doi:10.1016/0022-0396(92)90103-T
[22] L. C. Evans“Partial Differential Equations”, American Mathematical Society, Providence, Rhode Island, 1998. Zbl1194.35001 · Zbl 1194.35001
[23] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^N\), In: “Mathematical Analysis and Applications”, Part A, N. Nachbin (ed.), Adv. Math. Suppl. Stud., Vol. 7, 1981, 369-402. Zbl0469.35052 MR634248 · Zbl 0469.35052
[24] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer Verlag Berlin Heidelberg, 2001. Zbl0361.35003 MR1814364 · Zbl 0361.35003
[25] M. Grossi and A. Pistoia, On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations 5 (2000), 1397-1420. Zbl0989.35054 MR1785679 · Zbl 0989.35054
[26] M. Grossi, A. Pistoia and J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations 11 (2000), 143-175. Zbl0964.35047 MR1782991 · Zbl 0964.35047 · doi:10.1007/s005260000035
[27] C. Gui and J. Wei, Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999), 1-27. Zbl1061.35502 MR1721719 · Zbl 1061.35502 · doi:10.1016/S0022-0396(99)80016-3
[28] C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000), 522-538. Zbl0949.35052 MR1758231 · Zbl 0949.35052 · doi:10.4153/CJM-2000-024-x
[29] C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 249-289. Zbl0944.35020 MR1743431 · Zbl 0944.35020 · doi:10.1016/S0294-1449(99)00104-3
[30] L. L. Helms, “Introduction to Potential Theory”, John Wiley & sons Inc., New York, 1969. Zbl0188.17203 MR261018 · Zbl 0188.17203
[31] M. K. Kwong, Uniqueness of positive solutions of \(\Delta u -u + u^p=0\) in \(\mathbb{R}^N,\) Arch. Ration. Mech. Anal. 105 (1991), 243-266. Zbl0676.35032 MR969899 · Zbl 0676.35032 · doi:10.1007/BF00251502
[32] Y. Y. Li, On a singularly perturbed equation with Neumann boundary conditions, Commun. Partial Differential Equations 23 (1998), 487-545. Zbl0898.35004 MR1620632 · Zbl 0898.35004 · doi:10.1080/03605309808821354
[33] Y.-Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445-1490. Zbl0933.35083 MR1639159 · Zbl 0933.35083 · doi:10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.0.CO;2-Z
[34] W. M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281. Zbl0796.35056 MR1219814 · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[35] W. M. Ni and I. Takagi, On the shape of least energy solutions to a semi-linear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851. Zbl0754.35042 MR1115095 · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[36] W. M. Ni, I. Takagi and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998), 597-618. Zbl0946.35007 MR1639546 · Zbl 0946.35007 · doi:10.1215/S0012-7094-98-09424-8
[37] W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 723-761. Zbl0838.35009 MR1342381 · Zbl 0838.35009 · doi:10.1002/cpa.3160480704
[38] D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (2005), 141-164. Zbl1074.81023 MR2110455 · Zbl 1074.81023 · doi:10.1142/S0218202505003939
[39] J. Wei, On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997), 104-133. Zbl0873.35007 MR1429093 · Zbl 0873.35007 · doi:10.1006/jdeq.1996.3218
[40] J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996), 315-333. Zbl0865.35011 MR1404386 · Zbl 0865.35011 · doi:10.1006/jdeq.1996.0120
[41] J. Wei, Conditions for two-peaked solutions of singularly perturbed elliptic equations, Manuscripta Math. 96 (1998), 113-131. Zbl0901.35003 MR1624364 · Zbl 0901.35003 · doi:10.1007/s002290050057
[42] X. P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear Analysis TMA 12 (1998), 1297-1316. Zbl0671.35023 MR969507 · Zbl 0671.35023 · doi:10.1016/0362-546X(88)90061-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.