×

Equivalences of families of stacky toric Calabi-Yau hypersurfaces. (English) Zbl 1431.14040

The central results of this paper directly address the following question: given a pair of Fano toric varieties – and a pair of anti-canonical sections – can one provide natural conditions under which the zero loci of these sections define birational Calabi-Yau varieties? Alternatively, after a crepant partial resolution, when can we obtain a derived equivalence between such pairs of Calabi-Yau varieties?
As well as the general theory of toric varieties, the relevant aspects of which are summarised in the opening pages of the article, the central results draw on the derived equivalences obtained from variation of GIT by M. Ballard et al. [J. Reine Angew. Math. 746, 235–303 (2019; Zbl 1432.14015)] and D. Halpern-Leistner [J. Am. Math. Soc. 28, No. 3, 871–912 (2015; Zbl 1354.14029)], as well as the recent related work of D. Favero and T. L. Kelly [Adv. Math. 352, 943–980 (2019; Zbl 1444.14076)] on Berglund-Hübsch-Krawitz mirror symmetry.
The authors provide a wide array of applications for the derived and birational equivalences they obtain. In particlar, the authors describe birational and derived equivalences between mirrors constructed from anti-canonical hypersurfaces in the same toric Fano variety using a range of mirror constructions. These equivalences make use of the mirror construction of P. Clarke [Adv. Theor. Math. Phys. 21, No. 1, 243–287 (2017; Zbl 1386.81130)], which interprets various mirror constructions as an exchange of linear data associated to a pair of Landau-Ginzburg models via the sigma model/Landau-Ginzburg correspondence.
As well as the derived equivlance of Calabi-Yau mirrors, the authors obtain birational and derived equivalences between various \(K3\) surfaces obtained from the list of 95 weighted projective spaces whose anti-canonical linear system contain quasi-smooth \(K3\) surfaces with ADE singularities, recovering birational equivalences of M. Kobayashi and M. Mase [Tokyo J. Math. 35, No. 2, 461–467 (2012; Zbl 1262.14046)]. Moreover, applying their results to the case of quartic \(K3\) surfaces, the authors obtain equivalances between 52 of the 95 families in Reid’s list and linear systems of quartic surfaces.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14C22 Picard groups
14J33 Mirror symmetry (algebro-geometric aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J28 \(K3\) surfaces and Enriques surfaces

Software:

Macaulay2; SageMath

References:

[1] Artebani, Michela; Comparin, Paola; Guilbot, Robin, Families of Calabi-Yau hypersurfaces in \(\mathbb{Q} \)-Fano toric varieties, J. Math. Pures Appl. (9), 106, 2, 319-341 (2016) · Zbl 1353.14061 · doi:10.1016/j.matpur.2016.02.012
[2] Aspinwall, Paul S.; Plesser, M. Ronen, General mirror pairs for gauged linear sigma models, J. High Energy Phys., 11, 029, front matter+32 pp. (2015) · Zbl 1388.81473
[3] M. Ballard, D. Favero, and L. Katzarkov, Variation of Geometric Invariant Theory quotients and derived categories, http:arxiv.org/pdf/1203.6643v2arXiv:1203.6643, to appear in Crelle. · Zbl 1432.14015
[4] Batyrev, Victor V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 3, 493-535 (1994) · Zbl 0829.14023
[5] Batyrev, Victor V.; Borisov, Lev A., Mirror duality and string-theoretic Hodge numbers, Invent. Math., 126, 1, 183-203 (1996) · Zbl 0872.14035 · doi:10.1007/s002220050093
[6] Belcastro, Sarah-Marie, Picard lattices of families of \(K3\) surfaces, Comm. Algebra, 30, 1, 61-82 (2002) · Zbl 1053.14045 · doi:10.1081/AGB-120006479
[7] Berglund, Per; H\"ubsch, Tristan, A generalized construction of mirror manifolds, Nuclear Phys. B, 393, 1-2, 377-391 (1993) · Zbl 1245.14039 · doi:10.1016/0550-3213(93)90250-S
[8] Borisov, Lev A., Berglund-H\"ubsch mirror symmetry via vertex algebras, Comm. Math. Phys., 320, 1, 73-99 (2013) · Zbl 1317.17032 · doi:10.1007/s00220-013-1717-y
[9] Bruzzo, Ugo; Grassi, Antonella, Picard group of hypersurfaces in toric 3-folds, Internat. J. Math., 23, 2, 1250028, 14 pp. (2012) · Zbl 1252.14031 · doi:10.1142/S0129167X12500280
[10] Clarke, Patrick, A proof of the birationality of certain BHK-mirrors, Complex Manifolds, 1, 45-51 (2014) · Zbl 1320.32032 · doi:10.2478/coma-2014-0003
[11] Clarke, Patrick, Birationality and Landau-Ginzburg Models, Comm. Math. Phys., 353, 3, 1241-1260 (2017) · Zbl 1428.14074 · doi:10.1007/s00220-017-2830-0
[12] Clarke, Patrick, Duality for toric Landau-Ginzburg models, Adv. Theor. Math. Phys., 21, 1, 243-287 (2017) · Zbl 1386.81130 · doi:10.4310/ATMP.2017.v21.n1.a5
[13] Clingher, Adrian; Doran, Charles F., Lattice polarized K3 surfaces and Siegel modular forms, Adv. Math., 231, 1, 172-212 (2012) · Zbl 1245.14036 · doi:10.1016/j.aim.2012.05.001
[14] Cox, David A.; Little, John B.; Schenck, Henry K., Toric varieties, Graduate Studies in Mathematics 124, xxiv+841 pp. (2011), American Mathematical Society, Providence, RI · Zbl 1223.14001 · doi:10.1090/gsm/124
[15] Doran, Charles; Greene, Brian; Judes, Simon, Families of quintic Calabi-Yau 3-folds with discrete symmetries, Comm. Math. Phys., 280, 3, 675-725 (2008) · Zbl 1158.14034 · doi:10.1007/s00220-008-0473-x
[16] D. Favero and T. L. Kelly, Derived Categories of BHK Mirrors, arXiv:1602.05876. · Zbl 1444.14076
[17] D. Favero and T. L. Kelly, Fractional Calabi-Yau Categories via Landau-Ginzburg Models, arXiv:1610:04918, to appear in Algebraic Geometry. · Zbl 1423.14122
[18] Favero, David; Kelly, Tyler L., Proof of a conjecture of Batyrev and Nill, Amer. J. Math., 139, 6, 1493-1520 (2017) · Zbl 1390.14124 · doi:10.1353/ajm.2017.0038
[19] Iano-Fletcher, A. R., Working with weighted complete intersections. Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, 101-173 (2000), Cambridge Univ. Press, Cambridge · Zbl 0960.14027
[20] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at www.math.uiuc.edu/Macaulay2/http://www.math.uiuc.edu/Macaulay2/
[21] Greene, B. R.; Plesser, M. R., Duality in Calabi-Yau moduli space, Nuclear Phys. B, 338, 1, 15-37 (1990) · doi:10.1016/0550-3213(90)90622-K
[22] Halpern-Leistner, Daniel, The derived category of a GIT quotient, J. Amer. Math. Soc., 28, 3, 871-912 (2015) · Zbl 1354.14029 · doi:10.1090/S0894-0347-2014-00815-8
[23] Herbst, Manfred; Walcher, Johannes, On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories, Math. Ann., 353, 3, 783-802 (2012) · Zbl 1248.14022 · doi:10.1007/s00208-011-0704-x
[24] Kawamata, Yujiro, Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo, 12, 2, 211-231 (2005) · Zbl 1095.14014
[25] Kelly, Tyler L., Berglund-H\"ubsch-Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449 (2013) · Zbl 1316.14076
[26] Kobayashi, Masanori; Mase, Makiko, Isomorphism among families of weighted \(K3\) hypersurfaces, Tokyo J. Math., 35, 2, 461-467 (2012) · Zbl 1262.14046 · doi:10.3836/tjm/1358951330
[27] Krawitz, Marc, FJRW rings and Landau-Ginzburg mirror symmetry, 67 pp. (2010), ProQuest LLC, Ann Arbor, MI · Zbl 1250.81087
[28] Kreuzer, Maximilian; Skarke, Harald, On the classification of quasihomogeneous functions, Comm. Math. Phys., 150, 1, 137-147 (1992) · Zbl 0767.57019
[29] Li, Zhan, On the birationality of complete intersections associated to nef-partitions, Adv. Math., 299, 71-107 (2016) · Zbl 1360.14040 · doi:10.1016/j.aim.2016.05.006
[30] Mullet, Joshua P., Toric Calabi-Yau hypersurfaces fibered by weighted \(K3\) hypersurfaces, Comm. Anal. Geom., 17, 1, 107-138 (2009) · Zbl 1190.14039 · doi:10.4310/CAG.2009.v17.n1.a5
[31] Reid, Miles, The moduli space of \(3\)-folds with \(K=0\) may nevertheless be irreducible, Math. Ann., 278, 1-4, 329-334 (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[32] F. Rohsiepe, Lattice polarized toric K3 surfaces, http://arxiv.org/pdf/hep-th/0409290v1.pdfarXiv:hep-th/0409290.
[33] SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers, 2018, http://www.sagemath.org.
[34] Shoemaker, Mark, Birationality of Berglund-H\"ubsch-Krawitz mirrors, Comm. Math. Phys., 331, 2, 417-429 (2014) · Zbl 1395.14034 · doi:10.1007/s00220-014-2121-y
[35] Vinberg, E. B., On the algebra of Siegel modular forms of genus 2, Trans. Moscow Math. Soc., 1-13 (2013) · Zbl 1302.05005 · doi:10.1090/s0077-1554-2014-00217-x
[36] W\l odarczyk, Jaros\l aw, Decomposition of birational toric maps in blow-ups &blow-downs, Trans. Amer. Math. Soc., 349, 1, 373-411 (1997) · Zbl 0867.14005 · doi:10.1090/S0002-9947-97-01701-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.