×

Derived categories of BHK mirrors. (English) Zbl 1444.14076

P. Candelas et al. observed a mathematical phenomenon (later named by Brian Greene as “mirror symmetry”) where two Calabi-Yau hypersurfaces in weighted-projective 4-spaces come in pairs with flipped Hodge numbers [Nucl. Phys., B 341, No. 2, 383–402 (1990; Zbl 0962.14029)]. P. Berglund and T. Hübsch gave a mirror construction for quasi-smooth hypersurfaces in a weighted projective space [Nucl. Phys., B 393, No. 1–2, 377–391 (1993; Zbl 1245.14039)]. This proposal had a drawback – it was unable to accommodate the later enriched theory of P. Candelas et al. [Nucl. Phys., B 450, No. 1–2, 267–290 (1995; Zbl 0896.14023)]. Fortunately, a toric mirror construction due to V. V. Batyrev (and Batyrev-Borisov) saved the day and provided pivotal construction for future work on mirror symmetry [J. Algebr. Geom. 3, No. 3, 493–535 (1994; Zbl 0829.14023)]. In 2007, Berglund-Hübsch’s mirrors revived in a series of articles by H. Fan et al. in their study of Landau-Ginzburg mirror symmetry [Ann. Math. (2) 178, No. 1, 1–106 (2013; Zbl 1310.32032)]. Soon later, M. Krawitz formulated a Berglund-Hübsch mirror symmetry statement [“FJRW rings and Landau-Ginzburg mirror symmetry”, Preprint, arXiv:0906.0796] and A. Chiodo and Y. Ruan went on to prove that the Berglund-Hübsch-Krawitz (BHK) mirrors form a mirror pair at the level of Chen-Ruan orbifold cohomology [Adv. Math. 227, No. 6, 2157–2188 (2011; Zbl 1245.14038)].
Both Batyrev-Borisov mirrors and Berglund-Hübsch-Krawitz mirrors had evidence of being correct ones, however they are not necessarily isomorphic. So one needs a mathematical notion of ‘equivalence’ such that different mirrors are ‘equivalent’. The answer is the derived category of coherent sheaves (in the complex geometry side) and the derived Fukaya category (in the symplectic side) in light of Kontsevich’s homological mirror symmetry (HMS) conjecture. The paper under review work in this direction: the authors proved that HMS conjecture holds for Berglund-Hübsch-Krawitz mirror pencils in projective spaces. The proof is based on earlier works of P. Seidel [Homological mirror symmetry for the quartic surface. Providence, RI: American Mathematical Society (AMS) (2015; Zbl 1334.53091)] and N. Sheridan [Invent. Math. 199, No. 1, 1–186 (2015; Zbl 1344.53073)].
Reviewer: Yalong Cao (Chiba)

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category

References:

[1] Ballard, M.; Favero, D.; Katzarkov, L., Variation of geometric invariant theory quotients and derived categories · Zbl 1432.14015
[2] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 3, 493-535 (1994) · Zbl 0829.14023
[3] Berglund, P.; Hübsch, T., A generalized construction of mirror manifolds, Nuclear Phys. B, 393, 377-391 (1993) · Zbl 1245.14039
[4] Borisov, L., Berglund-Hübsch mirror symmetries via vertex algebras, Comm. Math. Phys., 320, 1, 73-99 (2013) · Zbl 1317.17032
[5] Candelas, P.; de la Ossa, X.; Katz, S., Mirror symmetry for Calabi-Yau hypersurfaces in weighted \(P^4\) and extensions of Landau-Ginzburg theory, Nuclear Phys. B, 450, 267-292 (1995) · Zbl 0896.14023
[6] Candelas, P.; Lynker, M.; Schimmrigk, R., Calabi-Yau manifolds in weighted \(P_4\), Nuclear Phys. B, 341, 383-402 (1990) · Zbl 0962.14029
[7] Chen, W.; Ruan, Y., A new cohomology theory of orbifold, Comm. Math. Phys., 248, 1, 1-31 (2004) · Zbl 1063.53091
[8] Chiodo, A.; Ruan, Y., LG/CY correspondence: the state space isomorphism, Adv. Math., 227, 6, 2157-2188 (2011) · Zbl 1245.14038
[9] Clarke, P., Duality for toric Landau-Ginzberg models
[10] Clarke, P., A proof of the birationality of certain BHK-mirrors, Complex Manifolds, 1, 45-51 (2014) · Zbl 1320.32032
[11] Cox, D.; Little, J.; Schenck, H., Toric Varieties, Graduate Studies in Mathematics, vol. 124 (2011), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1223.14001
[12] Dolgachev, I.; Hu, Y., Variation of geometric invariant theory quotients. With an appendix by N. Ressayre, Publ. Math. Inst. Hautes Études Sci., 87, 5-56 (1998) · Zbl 1001.14018
[13] Doran, C. F.; Garavuso, R. S., Hori-Vafa mirror periods, Picard-Fuchs equations, and Berglund-Hübsch-Krawitz duality, J. High Energy Phys., 128, 10 (2011) · Zbl 1303.81160
[14] Fan, H.; Jarvis, T.; Ruan, Y., The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math., 178, 1, 1-106 (2013) · Zbl 1310.32032
[15] Favero, D.; Iliev, A.; Katzarkov, L., On the Griffiths groups of Fano manifolds of Calabi-Yau Hodge type, Pure Appl. Math. Q., 10, 1, 1-55 (2014) · Zbl 1311.14041
[16] Favero, D.; Kelly, T. L., Proof of a Conjecture of Batyrev and Nill, Amer. J. Math., 139, 6, 1493-1520 (2017) · Zbl 1390.14124
[17] Gel’fand, I.; Kapranov, M.; Zelevinsky, A., Discriminants, Resultants and Multidimensional Determinants, Modern Birkhäuser Classics (2008), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, reprint of the 1994 edition · Zbl 1138.14001
[18] Greene, B. R.; Plesser, M. R., Duality in Calabi-Yau moduli space, Nuclear Phys. B, 338, 15-37 (1990)
[19] Halpern-Leistner, D., The derived category of a GIT quotient, J. Amer. Math. Soc., 28, 3, 871-912 (2015) · Zbl 1354.14029
[20] Herbst, M.; Walcher, J., On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories, Math. Ann., 353, 3, 783-802 (2012) · Zbl 1248.14022
[21] Hirano, Y., Derived Knörrer periodicity and Orlov’s theorem for gauged Landau-Ginzburg models · Zbl 1370.14019
[22] Isik, M. U., Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. IMRN, 12, 2787-2808 (2013) · Zbl 1312.14052
[23] Kelly, T. L., Berglund-Hübsch-Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449 (2013) · Zbl 1316.14076
[24] Krawitz, M., FJRW rings and Landau-Ginzburg mirror symmetry · Zbl 1250.81087
[25] Kreuzer, M.; Skarke, H., On the classification of quasihomogeneous functions, Comm. Math. Phys., 150, 1, 137-147 (1992) · Zbl 0767.57019
[26] Lee, C. W., Regular triangulations of convex polytopes, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, 443-456 (1990) · Zbl 0746.52015
[27] Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc., 23, 853-908 (2010) · Zbl 1197.14014
[28] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34 (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.14004
[29] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 246, 240-262 (2004) · Zbl 1101.81093
[30] Polishchuk, A.; Zaslow, E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys., 2, 443-470 (1998) · Zbl 0947.14017
[31] Seidel, P., Homological mirror symmetry for the quartic surface, Mem. Amer. Math. Soc., 236, 1116 (2015) · Zbl 1334.53091
[32] Sheridan, N., Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math., 199, 1, 1-186 (2015) · Zbl 1344.53073
[33] Shipman, I., A geometric approach to Orlov’s theorem, Compos. Math., 148, 5, 1365-1389 (2012) · Zbl 1253.14019
[34] Shoemaker, M., Birationality of Berglund-Hübsch-Krawitz mirrors, Comm. Math. Phys., 331, 2, 417-429 (2014) · Zbl 1395.14034
[35] Thaddeus, M., Geometric invariant theory and flips, J. Amer. Math. Soc., 9, 3, 691-723 (1996) · Zbl 0874.14042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.