×

Singular cycles connecting saddle periodic orbit and saddle equilibrium in piecewise smooth systems. (English) Zbl 1430.37025

Summary: For flows, the singular cycles connecting saddle periodic orbit and saddle equilibrium can potentially result in the so-called singular horseshoe, which means the existence of a non-uniformly hyperbolic chaotic invariant set. However, it is very hard to find a specific dynamical system that exhibits such singular cycles in general. In this paper, the existence of the singular cycles involving saddle periodic orbits is studied by two types of piecewise smooth systems: One is the piecewise smooth systems having an admissible saddle point with only real eigenvalues and an admissible saddle periodic orbit, and the other is the piecewise smooth systems having an admissible saddle-focus and an admissible saddle periodic orbit. Several kinds of sufficient conditions are obtained for the existence of only one heteroclinic cycle or only two heteroclinic cycles in the two types of piecewise smooth systems, respectively. In addition, some examples are presented to illustrate the results.

MSC:

37C27 Periodic orbits of vector fields and flows
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37C29 Homoclinic and heteroclinic orbits for dynamical systems

References:

[1] Afraimovic, V.S., Bykov, V.V., Sil’Nikov, L.P.: Origin and structure of the Lorenz attractor. Akad. Nauk SSSR Dokl. 234(2), 336-339 (1977)
[2] Araújo, V.: Three-Dimensional Flows. Springer, Berlin (2010) · Zbl 1202.37002 · doi:10.1007/978-3-642-11414-4
[3] Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864-1876 (2000) · Zbl 0990.93010 · doi:10.1109/TAC.2000.880987
[4] Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer, Berlin (2008) · Zbl 1146.37003
[5] Bischi, G.I., Chiarella, C., Sushko, I.: Global Analysis of Dynamic Models in Economics and Finance: Essays in Honour of Laura Gardini. Springer, Berlin (2012) · Zbl 1247.91004
[6] Carrasco-Olivera, D., Morales, C., San Martn, B.: One-dimensional contracting singular horseshoe. Proc. Am. Math. Soc. 138(11), 4009-4009 (2010) · Zbl 1223.37051 · doi:10.1090/S0002-9939-2010-10392-1
[7] Chua, L.O., Lin, G.N.: Canonical realization of Chua’s circuit family. IEEE Trans. Circuits Syst. 37(7), 885-902 (1990) · Zbl 0706.94026 · doi:10.1109/31.55064
[8] Deng, B.: Constructing homoclinic orbits and chaotic attractors. Int. J. Bifurc. Chaos 4(04), 823-841 (1994) · Zbl 0873.34036 · doi:10.1142/S0218127494000599
[9] Deng, B., Hines, G.: Food chain chaos due to Shilnikov’s orbit. Chaos Interdiscip. J. Nonlinear Sci. 12(3), 533 (2002) · Zbl 1080.92518 · doi:10.1063/1.1482255
[10] Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publications Mathématiques De Linstitut Des Hautes Études Scientifiques 50(1), 59-72 (1979) · Zbl 0436.58018 · doi:10.1007/BF02684769
[11] Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207-304 (2006) · Zbl 1100.34002 · doi:10.1137/S0036144504445133
[12] Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. Handb. Dyn. Syst. 3, 379-524 (2010) · Zbl 1243.37024 · doi:10.1016/S1874-575X(10)00316-4
[13] Huan, S., Li, Q., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69(4), 1915-1927 (2012) · Zbl 1263.34078 · doi:10.1007/s11071-012-0396-0
[14] Huan, S.M., Yang, X.S.: Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems. Int. J. Bifurc. Chaos 24(12), 1450158 (2014) · Zbl 1305.34025 · doi:10.1142/S0218127414501582
[15] Johansson, M., Rantzer, A., Arzen, K.E.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713-722 (1999) · Zbl 0960.93028 · doi:10.1109/91.811241
[16] Labarca, R., Pacifico, M.J.: Stability of singular horseshoes. Topology 25(3), 337-352 (1986) · Zbl 0611.58033 · doi:10.1016/0040-9383(86)90048-0
[17] Leonov, G.A.: General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys. Lett. A 376(45), 3045-3050 (2012) · Zbl 1266.34079 · doi:10.1016/j.physleta.2012.07.003
[18] Leonov, G.A.: Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn. 78(4), 2751-2758 (2014) · Zbl 1331.34079 · doi:10.1007/s11071-014-1622-8
[19] Li, Q., Yang, X.S.: New walking dynamics in the simplest passive bipedal walking model. Appl. Math. Model. 36(11), 5262-5271 (2012) · Zbl 1254.70020 · doi:10.1016/j.apm.2011.12.049
[20] Liang, F., Han, M.: Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals 45(4), 454-464 (2012) · Zbl 1281.34055 · doi:10.1016/j.chaos.2011.09.013
[21] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[22] Medrano-T, R.O., Baptista, M.S., Caldas, I.L.: Homoclinic orbits in a piecewise system and their relation with invariant sets. Physica D Nonlinear Phenom. 186(3-4), 133-147 (2003) · Zbl 1029.37013 · doi:10.1016/j.physd.2003.08.002
[23] Pisarchik, A., Jaimes-Reátegui, R.: Homoclinic orbits in a piecewise linear Rössler-like circuit. J. Phys. Conf. Ser. 23, 122 (2005) · Zbl 1136.34345 · doi:10.1088/1742-6596/23/1/014
[24] Shil’nikov, L., Shil’nikov, A., Turaev, D., Chua, L.: Methods of Qualitative Theory in Nonlinear Dynamics (Part II). World Scientific, Singapore (2001) · Zbl 1046.34003 · doi:10.1142/4221
[25] Singh, J., Roy, B.: Simplest hyperchaotic system with only one piecewise linear term. Electron. Lett. 55, 378-380 (2019) · doi:10.1049/el.2018.8078
[26] Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266(1), 19-23 (2000) · doi:10.1016/S0375-9601(00)00026-8
[27] Tigan, G., Turaev, D.: Analytical search for homoclinic bifurcations in the Shimizu-Morioka model. Physica D Nonlinear Phenom. 240(12), 985-989 (2011) · Zbl 1218.34046 · doi:10.1016/j.physd.2011.02.013
[28] Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197-1202 (1999) · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X
[29] Wang, L., Yang, X.S.: Heteroclinic cycles in a class of 3-dimensional piecewise affine systems. Nonlinear Anal. Hybrid Syst. 23, 44-60 (2017) · Zbl 1418.37041 · doi:10.1016/j.nahs.2016.07.001
[30] Wei, L., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete Contin. Dyn. Syst. Ser. A 36(5), 2803-2825 (2015) · Zbl 1334.37051 · doi:10.3934/dcds.2016.36.2803
[31] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003) · Zbl 1027.37002
[32] Wu, T., Wang, L., Yang, X.S.: Chaos generator design with piecewise affine systems. Nonlinear Dyn. 84(2), 817-832 (2016) · Zbl 1354.37042 · doi:10.1007/s11071-015-2529-8
[33] Yu, S., Lü, J., Chen, G., Yu, X.: Design of grid multi-wing butterfly chaotic attractors from piecewise Lü system based on switching control and heteroclinic orbit. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 1335-1338. IEEE (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.