×

Global well-posedness of the critical Burgers equation in critical Besov spaces. (English) Zbl 1184.35003

The Burgers equation in the critical case \(\alpha=1\), i.e., \[ \left. \begin{aligned} &\partial_t u + u\partial_x u + \Lambda u = 0,\\ &u(x,0)=u_0(x), \end{aligned}\right\} \quad x\in\mathbb{R}, \] is studied in the context of the Besov space \(\dot{B}^{1/p}_{p,1}(\mathbb{R})\), \(p\in [1,\infty)\). Here \(\Lambda\) is defined via \(\mathcal{F}(\Lambda^\alpha u)(\xi) = |\xi|^\alpha \mathcal{F}u(\xi)\), \(0\leq \alpha\leq 2\). This is closely related to recent similar results in the periodic case in the Hilbert space setting \(H^{1/2}(\mathbb{T}^1)\) in [A. Kiselev, F. Nazarov and R. Shterenberg, Dyn. Partial Differ. Equ. 5, No. 3, 211–240 (2008; Zbl 1186.35020)]. Moreover, the authors use methods and arguments developed there and in [H. Abidi and T. Hmidi, SIAM J. Math. Anal. 40, No. 1, 167–185 (2008; Zbl 1157.76054)]. The first main result proves uniqueness of the global solution \(u\) of the above PDE with regularity \[ u\in \mathcal{C}(\mathbb{R}^+; \dot{B}^{\frac1p}_{p,1})\cap L^1_{\mathrm{loc}}(\mathbb{R}^+; \dot{B}^{\frac1p+1}_{p,1}), \] assuming that the initial value satisfies \(u_0\in \dot{B}^{1/p}_{p,1}(\mathbb{R})\), \(p\in [1,\infty)\). The major part of the paper is devoted to the proof of the local well-posedness which itself requires an optimal a priori estimate for the transport-diffusion equation in \(\mathbb{R}^N\), \[ \begin{cases} \partial_t u + v \cdot \nabla u + \nu \Lambda^\alpha u = f,\\ u(x,0)=u_0(x), \end{cases} \] where \(v\) is a given vector field (not necessarily divergence free), \(f\) a given external force, \(\nu\geq 0\), and \(0\leq\alpha\leq 2\). The precise formulation is contained in Theorem 1.2 and was known in case of \(\alpha=2\) before. The authors extend the result in [R. Danchin, J. Hyperbolic Differ. Equ. 4, No. 1, 1-17 (2007; Zbl 1117.35012)] to the general situation \(\alpha\in [0,2]\).

MSC:

35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K55 Nonlinear parabolic equations
35Q53 KdV equations (Korteweg-de Vries equations)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35R11 Fractional partial differential equations

References:

[1] Abidi, H.; Hmidi, T., On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal., 40, 1, 167-185 (2008) · Zbl 1157.76054
[2] Alibaud, N., Entropy formulation for fractal conservation laws, J. Evol. Equ., 7, 145-175 (2007) · Zbl 1116.35013
[3] Alibaud, N.; Droniou, J., Occurrence and non-apperance of schockes in fractal Burgers equations, J. Hyperbolic Differ. Equ., 4, 3, 479-499 (2007) · Zbl 1144.35038
[4] Cannone, M.; Miao, C.; Wu, G., On the inviscid limit of the two-dimensional Navier-Stokes equations with fractional diffusion, Adv. Math. Sci. Appl., 18, 607-624 (2008) · Zbl 1387.35446
[5] Chen, Q.; Miao, C.; Zhang, Z., A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271, 821-838 (2007) · Zbl 1142.35069
[6] Constantin, P.; Cordoba, D.; Wu, J., On the critical dissipative quasi-geostrophic equation, Bloomington, IN, 2000. Bloomington, IN, 2000, Indiana Univ. Math. J., 50, 97-107 (2001), Dedicated to Professors Ciprian Foias and Roger Temam · Zbl 0989.86004
[7] Danchin, R., Uniform estimates for transport-diffusion equations, J. Hyperbolic Differ. Equ., 4, 1, 1-17 (2007) · Zbl 1117.35012
[8] Danchin, R., Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana, 21, 3, 863-888 (2005) · Zbl 1098.35038
[9] Dong, H.; Du, D., Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21, 4, 1095-1101 (2008) · Zbl 1141.35436
[10] Dong, H.; Du, D.; Li, D., Finite time singularities and global well-posedness for fractal Burgers equation, Indiana Univ. Math. J., 58 (2009) · Zbl 1166.35030
[11] Hmidi, T., Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl. (9), 84, 11, 1455-1495 (2005) · Zbl 1095.35024
[12] Hmidi, T.; Keraani, S., Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., 214, 2, 618-638 (1 October 2007) · Zbl 1119.76070
[13] Karch, G.; Miao, C.; Xu, X., On convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., 39, 1536-1549 (2007) · Zbl 1154.35080
[14] Kiselev, A.; Nazarov, F.; Shterenberg, R., Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5, 211-240 (2008) · Zbl 1186.35020
[15] Kiselev, A.; Nazarov, F.; Volberg, A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 445-453 (2007) · Zbl 1121.35115
[16] Miao, C.; Yuan, B.; Zhang, B., Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68, 461-484 (2008) · Zbl 1132.35047
[17] Runst, T.; Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl., vol. 3 (1996), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0873.35001
[18] Triebel, H., Theory of Function Spaces, Monogr. Math., vol. 78 (1983), Birkhäuser: Birkhäuser Basel, Boston, Stuttgart · Zbl 0546.46028
[19] Wu, G.; Yuan, J., Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces, J. Math. Anal. Appl., 340, 1326-1335 (2008) · Zbl 1151.35048
[20] Wu, J., The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity, 18, 139-154 (2005) · Zbl 1067.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.