×

Periodicity and multi-periodicity generated by impulses in delayed differential inclusions: application to discontinuous Nicholson’s blowflies model. (English) Zbl 1430.34024

Summary: Based on Krasnoselskii’s fixed point theorem of set-valued maps type, this paper studies the existence and multiplicity of periodic positive solutions for delayed differential inclusions with impulsive effects. These periodic positive solutions are generated by impulses. Then, the obtained results are applied to delayed Nicholson’s blowflies model where a novel discontinuous stocking policy is proposed. These results are of great significance in maintaining the sustainable development for populations, especially for endangered populations in a biological system.

MSC:

34A60 Ordinary differential inclusions
34K09 Functional-differential inclusions
34K45 Functional-differential equations with impulses
34A37 Ordinary differential equations with impulses
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Filippov, A.F.: Differential equations with discontinuous right-hand side. In: Mathematics and Its Applications (Soviet Series). Kluwer Academic, Boston (1988) · Zbl 0138.32204
[2] Aubin, J.P., Cellina, A.: Differential Inclusions, Set-Valued Functions and Viability Theory. Springer, Berlin (1984) · Zbl 0538.34007 · doi:10.1007/978-3-642-69512-4
[3] Haddad, G.: Monotone viable trajectories for functional differential inclusions. J. Differ. Equ. 42(1), 1-24 (1981) · Zbl 0472.34043 · doi:10.1016/0022-0396(81)90031-0
[4] Haddad, G.: Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. 39(12), 1349-1366 (1981) · Zbl 0496.34041 · doi:10.1016/0362-546X(81)90111-5
[5] Wang, K.N., Michel, A.N.: Stability analysis of differential inclusions in banach space with application to nonlinear systems with time delays. IEEE Trans. Circuits Syst. I 43(8), 617-626 (1996) · doi:10.1109/81.526677
[6] Benchohra, M., Ntouyas, S.K.: Existence results for functional differential inclusions. Electron. J. Differ. Equ. 2001(41), 1-8 (2001) · Zbl 0980.34062
[7] Lupulescu, V.: Existence of solutions for nonconvex functional differential inclusions. Electron. J. Differ. Equ. 2004(141), 1-6 (2004) · Zbl 1075.34055
[8] Hong, S.H.: Existence results for functional differential inclusions with infinite delay. Acta Math. Sin. 22(3), 773-780 (2006) · Zbl 1111.34059 · doi:10.1007/s10114-005-0600-y
[9] Liu, K.Z., Sun, X.M., Liu, J., Teel, A.R.: Stability theorems for delay differential inclusions. IEEE Trans. Autom. Control 61, 3215-3220 (2016) · Zbl 1359.34062 · doi:10.1109/TAC.2015.2507782
[10] Cai, Z.W., Huang, J.H., Huang, L.H.: Generalized Lyapunov-Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. Ser. B 22(9), 3591-3614 (2017) · Zbl 1371.34107
[11] Papageorgiou, N.S.: Periodic solutions of nonconvex differential inclusions. Appl. Math. Lett. 6(5), 99-101 (1993) · Zbl 0784.34014 · doi:10.1016/0893-9659(93)90110-9
[12] Hu, S., Papageorgiou, N.S.: On the existence of periodic solutions for nonconvex valued differential inclusions in \[R^N\] RN. Proc. Am. Math. Soc. 123, 3043-3050 (1995) · Zbl 0851.34014
[13] Li, Y., Lin, Z.: Periodic solutions of differential inclusions. Nonlinear Anal. 24, 631-641 (1995) · Zbl 0828.34012 · doi:10.1016/0362-546X(94)00111-T
[14] De Blasi, F.S., Górniewicz, L., Pianigiani, G.: Topological degree and periodic solutions of differential inclusions. Nonlinear Anal. 37, 217-245 (1999) · Zbl 0936.34009 · doi:10.1016/S0362-546X(98)00044-3
[15] Hu, S., Papageorgiou, N.S.: Periodic solutions for nonconvex differential inclusions. Proc. Am. Math. Soc. 127, 89-94 (1999) · Zbl 0905.34036 · doi:10.1090/S0002-9939-99-04338-5
[16] Li, G.C., Xue, X.P.: On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl. 276, 168-183 (2002) · Zbl 1020.34015 · doi:10.1016/S0022-247X(02)00397-9
[17] Dhage, B.C.: Fixed-point theorems for discontinuous multivalued operators on ordered spaces with applications. Comput. Math. Appl. 51, 589-604 (2006) · Zbl 1110.47043 · doi:10.1016/j.camwa.2005.07.017
[18] Xue, X.P., Yu, J.F.: Periodic solutions for semi-linear evolution inclusions. J. Math. Anal. Appl. 331, 1246-1262 (2007) · Zbl 1125.34027 · doi:10.1016/j.jmaa.2006.09.056
[19] Boucherif, A., Tisdell, C.C.: Existence of periodic and non-periodic solutions to systems of boundary value problems for first-order differential inclusions with super-linear growth. Appl. Math. Comput. 204, 441-449 (2008) · Zbl 1165.34004
[20] Qin, S.T., Xue, X.P.: Periodic solutions for nonlinear differential inclusions with multivalued perturbations. J. Math. Anal. Appl. 424, 988-1005 (2015) · Zbl 1318.34031 · doi:10.1016/j.jmaa.2014.11.057
[21] Cai, Z.W., Huang, J.H., Huang, L.H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667-4682 (2018) · Zbl 1400.34108 · doi:10.1090/proc/13883
[22] Ahmed, N.U.: Systems governed by impulsive differential inclusions on Hilbert spaces. Nonlinear Anal. 45, 693-706 (2001) · Zbl 0995.34053 · doi:10.1016/S0362-546X(99)00417-4
[23] Vinodkumar, A., Anguraj, A.: Existence of random impulsive abstract neutral non-autonomous differential inclusions with delays. Nonlinear Anal. Hybrid Syst. 5, 413-426 (2011) · Zbl 1238.93102 · doi:10.1016/j.nahs.2011.04.002
[24] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246, 3834-3863 (2009) · Zbl 1171.34052 · doi:10.1016/j.jde.2009.03.004
[25] Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Upper and lower solutions method for first-order impulsive differential inclusions with nonlinear boundary conditions. Comput. Math. Appl. 47, 1069-1078 (2004) · Zbl 1068.34009 · doi:10.1016/S0898-1221(04)90087-9
[26] Djebali, S., Górniewicz, L., Ouahab, A.: First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets. Math. Comput. Model. 52, 683-714 (2010) · Zbl 1202.34110 · doi:10.1016/j.mcm.2010.04.016
[27] Agarwal, R.P., O’Regan, D.: A note on the existence of multiple fixed points for multivalued maps with applications. J. Differ. Equ. 160, 389-403 (2000) · Zbl 1008.47055 · doi:10.1006/jdeq.1999.3690
[28] Agarwal, R.P., O’Regan, D.: Leray-Schauder and Krasnoselskii results for multivalued maps defined on pseudo-open subsets of a Fréchet space. Appl. Math. Lett. 19, 1327-1334 (2006) · Zbl 1152.47037 · doi:10.1016/j.aml.2005.11.017
[29] Pathak, H.K.: Integral \[\Phi\] Φ-type contractions and existence of continuous solutions for nonlinear integral inclusions. Nonlinear Anal. 71, 2577-2591 (2009) · Zbl 1239.45010 · doi:10.1016/j.na.2009.05.067
[30] O’Regan, D.: A Krasnoselskii cone compression theorem for \[{\cal{U}}_C^K\] UCK maps. Proc. R. Ir. Acad. A 103, 55-59 (2003) · Zbl 1060.47055 · doi:10.3318/PRIA.2003.103.1.55
[31] Izydorek, M., Kucharski, Z.: The Krasnoselskii theorem for permissible maps. Bull. Polish Acad. Sci. Math. 37, 145-149 (1989) · Zbl 0759.54027
[32] Turkoglu, D., Altun, I.: A fixed point theorem for multi-valued mappings and its applications to integral inclusions. Appl. Math. Lett. 20, 563-570 (2007) · Zbl 1130.47057 · doi:10.1016/j.aml.2006.07.002
[33] Hong, S.H., Wang, L.: Existence of solutions for integral inclusions. J. Math. Anal. Appl. 317, 429-441 (2006) · Zbl 1125.45006 · doi:10.1016/j.jmaa.2006.01.057
[34] Lasota, A., Opial, Z.: An application of the Kukutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 13, 781-786 (1965) · Zbl 0151.10703
[35] O’Regan, D.: Integral inclusions of upper semi-continuous or lower semi-continuous type. Proc. Am. Math. Soc. 124, 2391-2399 (1996) · Zbl 0860.45007 · doi:10.1090/S0002-9939-96-03456-9
[36] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990) · Zbl 0713.49021
[37] Paden, B.E., Sastry, S.S.: A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulator. IEEE Trans. Circuits Syst. 34, 73-82 (1987) · Zbl 0632.34005 · doi:10.1109/TCS.1987.1086038
[38] Zecca, P., Zezza, P.L.: Nonlinear boundary value problems in Banach spaces for multivalued differential equations in noncompact intervals. Nonlinear Anal. 3, 347-352 (1979) · Zbl 0443.34060 · doi:10.1016/0362-546X(79)90024-5
[39] Sun, J.T., Chu, J.F., Chen, H.B.: Periodic solution generated by impulses for singular differential equations. J. Math. Anal. Appl. 404, 562-569 (2013) · Zbl 1304.34076 · doi:10.1016/j.jmaa.2013.03.036
[40] Zhang, H., Li, Z.X.: Periodic and homoclinic solutions generated by impulses. Nonlinear Anal. 12, 39-51 (2011) · Zbl 1225.34019 · doi:10.1016/j.nonrwa.2010.05.034
[41] Wang, D.S., Huang, L.H.: Periodicity and multi-periodicity of generalized Cohen-Grossberg neural networks via functional differential inclusions. Nonlinear Dyn. 85(1), 67-86 (2016) · Zbl 1349.92027 · doi:10.1007/s11071-016-2667-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.