Skip to main content
Log in

Periodicity and multi-periodicity of generalized Cohen–Grossberg neural networks via functional differential inclusions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen–Grossberg neural networks with discontinuous right-hand sides and mixed time delays involving both time-varying delays and distributed delays. In view of functional differential inclusions theory, we obtain the existence of global solutions. By means of functional differential inclusions theory and fixed-point theorem of multi-valued maps, the existence of one and multiple positive periodic solutions for the neural networks is given. It is worthy to point out that, without assuming the boundedness or under linear growth condition of the discontinuous neuron activation functions, our results on the existence of one and multiple positive periodic solutions will also be valid. We derive some sufficient conditions for the global exponential stability and convergence of the discontinuous neural networks, in terms of non-smooth analysis theory with generalized Lyapunov approach. Finally, we give some numerical examples to show the applicability and effectiveness of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Forti, M., Nistri, P.: Global convergence of neural networks with discontinuous neuron activations. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 1421–1435 (2003)

    Article  MathSciNet  Google Scholar 

  2. Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16, 1449–1463 (2005)

    Article  Google Scholar 

  3. Cortés, J.: Discontinuous dynamical systems. IEEE Control Syst. Mag. 28, 36–73 (2008)

    Article  MathSciNet  Google Scholar 

  4. Liu, X., Chen, T., Cao, J., Lu, W.: Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches. Neural Netw. 24, 1013–1021 (2011)

    Article  MATH  Google Scholar 

  5. Liu, X., Cao, J.: Robust state estimations for neural networks with discontinuous activations. IEEE Trans. Syst., Man, Cybern. Part B 40, 1425–1437 (2010)

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Zuo, Y., Huang, L., Li, C.: Global robust stability of delayed neural networks with discontinuous activation functions. IET Control Theory Appl. 2, 543–553 (2008)

    Article  MathSciNet  Google Scholar 

  7. Lu, W., Chen, T.: Dynamical behaviors of delayed neural networks systems with discontinuous activation functions. Neural Comput. 18, 683–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hopfield, J., Tank, D.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 79, 3088–3092 (1984)

    Article  Google Scholar 

  9. Papini, D., Taddei, V.: Global exponential stability of the periodic solution of a delayed neural networks with discontinuous activations. Phys. Lett. A 343, 117–128 (2005)

    Article  MATH  Google Scholar 

  10. Liu, X., Cao, J.: On periodic solutions of neural networks via differential inclusions. Neural Netw. 22, 329–334 (2009)

    Article  MATH  Google Scholar 

  11. Cai, Z., Huang, L.: Existence and global asymptotic stability of periodic solution for discrete and distributed time-varying delayed neural networks with discontinuous activations. Neurocomputing 74, 3170–3179 (2011)

    Article  Google Scholar 

  12. Huang, L., Guo, Z.: Global convergence of periodic solution of neural networks with discontinuous activation functions. Chaos, Solitons and Fractals 42, 2351–2356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, L., Wang, J., Zhou, X.: Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations. Nonlinear Anal. RWA 10, 1651–1661 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiao, J., Zeng, Z., Shen, W.: Global asymptotic stability of delayed neural networks with discontinuous neuron activations. Neurocomputing 118, 322–328 (2013)

    Article  Google Scholar 

  15. Cai, Z., Huang, L., Guo, Z., Chen, X.: On the periodic dynamics of a class of time-varying delayed neural networks via differential inclusions. Neural Netw. 33, 97–113 (2012)

    Article  MATH  Google Scholar 

  16. Wu, H.: Stability analysis for periodic solution of neural networks with discontinuous neuron activations. Nonlinear Anal. RWA 10, 1717–1729 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J., Huang, L., Guo, Z.: Global asymptotic stability of neural networks with discontinuous activations. Neural Netw. 22, 931–937 (2009)

    Article  MATH  Google Scholar 

  18. Li, Y., Wu, H.: Global stability analysis for periodic solution in discontinuous neural networks with nonlinear growth activations. Adv. Differ. Equ. 2009, 1–4 (2009). doi:10.1155/2009/798685

    MathSciNet  MATH  Google Scholar 

  19. Gonzalez, S.: Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models. Department of Finance, Canada (2000)

    Google Scholar 

  20. Cheng, C., Lin, K., Shi, C.: Multistability an convergence in delayed neural networks. Phys. D 225, 61–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yi, Z., Tan, K., Lee, T.: Multistability analysis for recurrent neural networks with unsaturating piecewise linear transfer functions. Neural Comput. 15, 639–662 (2003)

    Article  MATH  Google Scholar 

  22. Lu, W., Wang, L., Chen, T.: On attracting basins of multiple equilibria of a class of cellular neural networks. IEEE Trans. Neural Netw. 22, 381–394 (2011)

    Article  Google Scholar 

  23. Zeng, Z., Wang, J.: Multiperiodicity and exponential attractivity evoked by periodic external inputs in delayed cellular neural networks. Neural Comput. 18, 848–870 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao, J., Feng, G., Wang, Y.: Multistability and multiperiodicity of delayed Cohen-Grossberg Neural networks with a general class of activation functions. Phys. D 237, 1734–1749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

    Article  Google Scholar 

  26. Macro, M., Forti, M., Grazzini, M., Pancioni, L.: Limit set dichotomy and multistability for a class of cooperative neural networks with delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 1473–1485 (2012)

    Article  Google Scholar 

  27. Zhou, T., Wang, M., Long, M.: Existence and exponential stability of multiple periodic solutions for a multidirectional associative memory neural network. Neural Process Lett. 35, 187–202 (2012)

    Article  Google Scholar 

  28. Nie, X., Huang, Z.: Multistability and multiperiodicity of high-order competitive neural networks with a general class of activation functions. Neurocomputing 82, 1–13 (2012)

    Article  Google Scholar 

  29. Huang, Y., Zhang, H., Wang, Z.: Multistability and multiperiodicity of delayed bidirectional associative memory networks with discontinuous activation functions. Appl. Math. Comput. 219, 899–910 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Huang, Y., Zhang, H., Wang, Z.: Dynamical stability analysis of multiple equilibrium points in time-varying delayed recurrent neural networks with discontinuous activation functions. Neurocomputing 91, 21–28 (2012)

    Article  Google Scholar 

  31. Hou, C., Qian, J.: Stability analysis for neural dynamics with time-varying delays. IEEE Trans. Neural Netw. 9, 221–223 (2008)

    Google Scholar 

  32. Huang, H., Ho, D., Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans. Circuits Syst. II(52), 251–255 (2005)

    Article  Google Scholar 

  33. Gopalsamy, K., He, X.: Delay-independent stability in bidirectional associative memory network. IEEE Trans. Neural Netw. 5, 998–1002 (1994)

    Article  Google Scholar 

  34. Zheng, C., Gong, C., Wang, Z.: Stability criteria for Cohen-Grossberg neural networks with mixed delays and inverse Lipschitz neuron activations. J. Frankl. Inst. 349, 2903–2924 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cohen, M., Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 13, 815–826 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Balasubramaniam, P., Vembarasan, V.: Robust stability of uncertain fuzzy BAM neural networks of neutral-type with Markovian jumping parameters and impulses. Comput. Math. Appl. 62, 1838–1861 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Balasubramaniam, P., Vembarasan, V.: Asymptotic stability of BAM neural networks of neutral-type with impulsive effects and time delay in the leakage term. Int. J. Comput. Math. 88, 3271–3291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sathy, R., Balasubramaniam, P.: Stability analysis of fuzzy Markovian jumping Cohen–Grossberg BAM neural networks with mixed time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 16, 2054–2064 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lu, W., Chen, T.: Dynamical behaviors of Cohen–Grossberg neural networks with discontinuous activation functions. Neural Netw. 18, 231–242 (2005)

    Article  MATH  Google Scholar 

  40. Meng, Y., Huang, L., Guo, Z., Hu, Q.: Stability analysis of Cohen–Grossberg neural networks with discontinuous neuron activations. Appl. Math. Model. 34, 358–365 (2010)

  41. He, X., Lu, W., Chen, T.: Nonnegative periodic dynamics of delayed Cohen–Grossberg neural networks with discontinuous activations. Neurocomputing 73, 2765–2772 (2010)

    Article  Google Scholar 

  42. Wang, D., Huang, L., Cai, Z.: On the periodic dynamics of a general Cohen–Grossberg BAM neural networks via differential inclusions. Neurocomputing 118, 203–214 (2013)

    Article  Google Scholar 

  43. Wang, D., Huang, L.: Periodicity and global exponential stability of generalized Cohen–Grossberg neural networks with discontinuous activations and mixed delays. Neural Netw. 51, 80–95 (2014)

    Article  MATH  Google Scholar 

  44. Chen, X., Song, Q.: Global exponential stability of the periodic solution of delayed Cohen–Grossberg neural networks with discontinuous activations. Neurocomputing 73, 3097–3104 (2010)

    Article  Google Scholar 

  45. Wang, D., Huang, L.: Almost periodic dynamical behaviors for generalized Cohen–Grossberg neural networks with discontinuous activations via differential inclusions. Commun. Nonlinear Sci. Numer. Simul. 19, 3857–3879 (2014)

    Article  MathSciNet  Google Scholar 

  46. Filippov, A.: Differential Equations with Discontinuous Right-hand Side. Mathematics and Its Applications (Soviet Series). Kluwer Academic, Boston (1988)

    Book  Google Scholar 

  47. Huang, L., Guo, Z., Wang, J.: Theory and Applications of Differential Equations with Discontinuous Right-Hand Sides. Science Press, Beijing (2011). (In Chinese)

    Google Scholar 

  48. Aubin, J., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  49. Aubin, J., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  50. Agarwal, R., O’Regan, D.: A note on the existence of multiple fixed points for multivalued maps with applications. J. Differ. Equ. 160, 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hong, S.: Multiple positive solutions for a class of integral inclusions. J. Comput. Appl. Math. 214, 19–29 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Benchohra, M., Hamani, S., Henderson, J.: Functional differential inclusions with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 15, 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zecca, P., Zezza, P.: Nonlinear boundary value problems in Banach spaces for multivalued differential equations in noncompact intervals. Nonlinear Anal. 3, 347–352 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  54. Balasubramaniam, P., Ntouyas, S.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl. 324, 161–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Xue, X., Yu, J.: Periodic solutions for semi-linear evolution inclusions. J. Math. Anal. Appl. 331, 1246–1262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Huang.

Additional information

This work was jointly supported by the National Natural Science Foundation of China (11371127, 11401228, 11501221, 61573004), the Natural Science Foundation of Fujian Province (2015J01584), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY201, ZQN-YX301).

Appendix

Appendix

1.1 Appendix A. Proof of Proposition 2.1

Proof

It is easy to see that the multi-valued map

$$\begin{aligned} x(t)\hookrightarrow Q(x(t))\mathcal {F}(t,f), \end{aligned}$$

where

$$\begin{aligned}&\mathcal {F}(t,f)=-D(t)x(t)+A(t)\overline{co}[f(x(t))] \\&\quad +\,B(t)\overline{co}[f(x(t-\tau (t)))] \\&\quad +\,C(t)\int _0^{+\infty }\overline{co}[f(x(t-s))]l(s)\hbox {d}s+I(t), \end{aligned}$$

is upper semi-continuous with non-empty compact convex values, the local existence of a solution \(x(t)=(x_1(t),x_2(t),\ldots ,x_n(t))^T\) of (2.2) can be guaranteed [46, 47]. That is, the IVP of system (2.2) has at least a solution \(x(t)=(x_1(t),x_2(t),\ldots ,x_n(t))^T\) on \([0,\mathcal {T})\) for some \(\mathcal {T}\in (0,+\infty ]\) and the derivative of x(t) is a measurable selection from \(Q(x(t))\mathcal {F}(t,f)\). For a real matrix \(\Lambda =(\lambda _{ij})_{m\times n}\), denote \(||\Lambda ||_{\mathcal {M}}=\max _{1\leqslant i\leqslant n}\sum _{j=1}^m|\lambda _{ij}|\). From the Continuation Theorem (Theorem 2, P78, [46]), we have that either \(\mathcal {T}=+\infty \), or \(\mathcal {T}<+\infty \) and \(\lim _{t\rightarrow T^{-}}||x(t)||_{\mathcal {M}}=+\infty \). In the following, we will prove that \(\lim _{t\rightarrow T^{-}}||x(t)||_{\mathcal {M}}<+\infty \) if \(\mathcal {T}<+\infty \), which means that the maximal existing interval of x(t) can be extended to \(+\infty \).

First, we’ll show that x(t) is uniformly bounded about \(t\in [0,\mathcal {T})\).

Let \(r_0=||x(0)||_{\mathcal {M}}\), \(r_s=\max _{0\leqslant t\leqslant s}||x(t)||_{\mathcal {M}}\). And the interval \([r_0, r_s]\) can be divided as follows

$$\begin{aligned} r_0<r_1<\cdots <r_m=r_s. \end{aligned}$$

Denote \(t_l^*=\min \{t\in [0,s]\mid ||x(t)||_{\mathcal {M}}=r_l\}, l=0,1,2,\ldots ,m;\) and \(t_l^{**}=\max \{t\in [0,t_{l+1}^*]\mid ||x(t)||_{\mathcal {M}}=r_l\}, l=0,1,2,\ldots ,m-1.\) Note that \(||x(t)||_{\mathcal {M}}\) is a continuous function, we have

$$\begin{aligned} t_0^*\leqslant t_0^{**}<t_1^*\leqslant t_1^{**}<\cdots <t_{m-1}^*\leqslant t_{m-1}^{**}<t_{m}^*, \end{aligned}$$

and

$$\begin{aligned}&r_l\leqslant ||x(t)||_{\mathcal {M}}\leqslant r_{l+1},\ \ \forall t\in [t_l^{**},t_{l+1}^*], \\&\quad i=0,1,2,\ldots ,m-1. \end{aligned}$$

Thus, we have

$$\begin{aligned}&r_{l+1}-r_l=||x(t_{l+1}^*)||_{\mathcal {M}}-||x(t_{l}^{**})||_{\mathcal {M}} \nonumber \\&\quad \leqslant ||x(t_{l+1}^*)-x(t_{l}^{**})||_{\mathcal {M}}\leqslant \int _{t_l^{**}}^{t_{l+1}^*}||x^\prime (t)||_{\mathcal {M}}\hbox {d}t. \end{aligned}$$
(7.1)

Since x(t) is a solution of the differential inclusions (2.2) with the initial condition \([\phi ,\psi ]\), we can obtain

$$\begin{aligned}&||x^\prime (t)||_{\mathcal {M}} \nonumber \\&\quad \leqslant ||Q(x(t))D(t)x(t)||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))A(t)\overline{co}[f(x(t))]||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))B(t)\overline{co}[f(x(t-\tau (t)))]||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))C(t)\int _0^{+\infty }\overline{co}[f(x(t\!-\!s))]l(s)\hbox {d}s||_{\mathcal {M}} \nonumber \\&\qquad +||Q(x(t))I(t)||_{\mathcal {M}} \nonumber \\&\quad \leqslant ||Q(x(t))||_{\mathcal {M}}||D(t)||_{\mathcal {M}}||x(t)||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))||_{\mathcal {M}}||A(t)||_{\mathcal {M}}||\overline{co}[f(x(t))]||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))||_{\mathcal {M}}||B(t)||_{\mathcal {M}}||\overline{co}[f(x(t\!-\!\tau (t)))]||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))||_{\mathcal {M}}||C(t)||_{\mathcal {M}}|| \nonumber \\&\qquad \times \int _0^{+\infty }\overline{co}\, [f(x(t-s))]l(s)\hbox {d}s||_{\mathcal {M}} \nonumber \\&\qquad +\,||Q(x(t))||_{\mathcal {M}}||I(t)||_{\mathcal {M}} \nonumber \\&\quad \leqslant \,M_1[||x(t)||_{\mathcal {M}}+W(||x(t)||_{\mathcal {M}})+1], \end{aligned}$$
(7.2)

where

$$\begin{aligned}&M_1 = \max _{t\in [0,\omega ]}\{\max \{q^M||D(t)||_{\mathcal {M}},q^M[||A(t)||_{\mathcal {M}} \\&\qquad +||B(t)||_{\mathcal {M}}+L||C(t)||_{\mathcal {M}}], \\&q^M[||B(t)||_{\mathcal {M}}+L||C(t)||_{\mathcal {M}}]||\psi ||_{\mathcal {M},\infty } \\&\qquad +q^M||I(t)||_{\mathcal {M}}\}\} \end{aligned}$$

and \(q^M=\max _{1\leqslant i\leqslant n}\{q_i^M\}\), \(||\psi ||_{\mathcal {M},\infty }=\max _{1{\leqslant } i{\leqslant } n}\{||\psi _i||_{\infty }\}{=}\max _{1{\leqslant } i{\leqslant } n}\{\hbox {ess}\sup _{s\in ({-}\infty ,0]}|\psi _i(s)|\}\).

It follows from (7.1) and (7.2) that

$$\begin{aligned} r_{l+1}-r_l&\leqslant \int _{t_l^{**}}^{t_{l+1}^*}||x^\prime (t)||_{\mathcal {M}}\hbox {d}t\leqslant \int _{t_l^{**}}^{t_{l+1}^*}M_1[||x(t)||_{\mathcal {M}} \nonumber \\&\quad +W(||x(t)||_{\mathcal {M}})+1]\hbox {d}t \nonumber \\&\leqslant [||x(\eta _l)||_{\mathcal {M}}+W(||x(\eta _l)||_{\mathcal {M}})+1]\nonumber \\&\quad \times M_1(t_{l+1}^*-t_l^{**}), \end{aligned}$$
(7.3)

where \(||x(\eta _l)||_{\mathcal {M}}+W(||x(\eta _l)||_{\mathcal {M}})=\max _{t\in [t_l^{**},t_{l+1}^*]}\{||x(t)||_{\mathcal {M}}+W(||x(t)||_{\mathcal {M}})\}\). From (7.3), we have

$$\begin{aligned}&\dfrac{1}{||x(\eta _l)||_{\mathcal {M}}+W(||x(\eta _l)||_{\mathcal {M}})+1}(r_{l+1}-r_l) \nonumber \\&\quad \leqslant M_1(t_{l+1}^*-t_l^{**}). \end{aligned}$$
(7.4)

Summing on both sides of (7.4) from 0 to \(m-1\) with respect to l, we can derive

$$\begin{aligned}&\sum _{l=0}^{m-1}\dfrac{1}{||x(\eta _l)||_{\mathcal {M}}+W(||x(\eta _l)||_{\mathcal {M}})+1}(r_{l+1}-r_l) \nonumber \\&\quad \leqslant \sum _{l=0}^{m-1}M_1(t_{l+1}^*-t_l^{**})\leqslant M_1\mathcal {T}. \end{aligned}$$

Since the division of segment \([r_0,r_s]\) is arbitrary, and from the definition of integration, we have

$$\begin{aligned} \int _{r_0}^{r_s}\dfrac{1}{1+r+W(r)}\hbox {d}r\leqslant M_1\mathcal {T}<+\infty , \end{aligned}$$

which, together with the condition (H3) imply that \(r_s\) is uniformly bounded about \(s\in [0,\mathcal {T})\). Hence, x(t) is uniformly bounded about \(t\in [0,\mathcal {T})\).

Next, we will show that \(\lim _{t\rightarrow T^-}||x(t)||_{\mathcal {M}}<+\infty \). There exists \(M_2\,{>}\,0\), such that \(||x(t)||_{\mathcal {M}}\leqslant M_2\), \(\forall t\in [0,\mathcal {T})\), since x(t) is uniformly bounded about \(t\in [0,\mathcal {T})\). For \(0\leqslant t_1<t_2<\mathcal {T}\), we have

$$\begin{aligned}&||x(t_2)-x(t_1)||_{\mathcal {M}} \leqslant \int _{t_1}^{t_2}||x'(t)||_{\mathcal {M}}\hbox {d}t \\&\quad \leqslant \int _{t_1}^{t_2}M_1[||x(t)||_{\mathcal {M}}+W(||x(t)||_{\mathcal {M}})+1]\hbox {d}t \\&\quad \leqslant [1+M_2+W(M_2)]M_1(t_2-t_1), \end{aligned}$$

which implies that \(\lim _{t\rightarrow T^-}x(t)\) exist, i.e., \(\lim _{t\rightarrow T^-}||x(t)||_{\mathcal {M}}<+\infty \). The proof is completed. \(\square \)

1.2 Appendix B. Proof of Lemma 3.1

Suppose that \(x(t)=(x_1(t),x_2(t),\ldots ,x_n(t))^T\) is a \(\omega \)-periodic solution of system (1.1) in the sense of Filippov, in view of Definition 2.1, we can obtain from (2.2) that

$$\begin{aligned}&\dfrac{\hbox {d}x_i(t)}{\hbox {d}t}\in q_i(x_i(t))\mathcal {F}_i(v,f),\ \ \hbox {for} \quad \hbox {a.e.}\ t\in [0,\mathcal {T}), \\&\quad i=1,2,\ldots ,n. \end{aligned}$$

Thus

$$\begin{aligned}&\left[ x_i(t)\hbox {e}^{\int _0^tq_i(x_i(s))d_i(s)\hbox {d}s}\right] ^\prime \in \hbox {e}^{\int _0^tq_i(x_i(s))d_i(s)\hbox {d}s}q_i(x_i(t)) \nonumber \\&\quad \mathfrak {F}_i(v,f),\ \ \hbox {for}\quad \hbox {a.e.}\ t\in [0,\mathcal {T}), \ \ i=1,2,\ldots ,n. \end{aligned}$$
(7.5)

Note that the periodicity of x(t), by integrating both sides of differential inclusion (7.5) over the interval \([t, t+\omega ](0\leqslant t\leqslant \omega )\), we get the following integral inclusions

$$\begin{aligned}&x_i(t) \in \int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,f)\hbox {d}v, \ \hbox {for }\, t \\&\quad \in [0,\omega ], \ \ i=1,2,\ldots ,n. \end{aligned}$$

That is, x(t) is a \(\omega \)-periodic solution of integral inclusions (3.1).

On the other hand, suppose that x(t) is a \(\omega \)-periodic solution of integral inclusions (3.1). By the integral representation theorem [48], there exist a measurable function \(\gamma =(\gamma _1,\gamma _2,\ldots ,\gamma _n)^T:[0,\mathcal {T})\rightarrow \mathbb {R}^n\) such that \(\gamma _i(t)\in \overline{co}[f_i(x_i(t))]\) for a.e. \(t\in [0, \mathcal {T})\) and

$$\begin{aligned} x_i(t)&=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v, \nonumber \\ i&=1,2,\ldots ,n. \end{aligned}$$
(7.6)

Since the right-hand sides of (7.6) is absolutely continuous, deviating the two sides of (7.6) about t, for a.e. \(t\in [0, \mathcal {T})\), we obtain

$$\begin{aligned} \dfrac{\hbox {d}x_i(t)}{\hbox {d}t}&=G_i(t,t+\omega )q_i(x_i(t+\omega ))\mathcal {F}_i(t+\omega ,\gamma ) \\&-G_i(t,t)q_i(x_i(t))\mathcal {F}_i(t,\gamma ). \end{aligned}$$

Note that the periodicity of x(t) and \(\gamma (t)\), we have

$$\begin{aligned} \dfrac{\hbox {d}x_i(t)}{\hbox {d}t}&= q_i(x_i(t))\mathcal {F}_i(t,\gamma ), \\&\hbox {for a.e.}\ t\in [0,\mathcal {T}), \ \ i=1,2,\ldots ,n. \end{aligned}$$

In view of Definition 2.1, we know that \(x(t)=(x_1(t),x_2(t),\ldots ,x_n(t))^T\) is a \(\omega \)-periodic solution of system (1.1) in the sense of Filippov.

The proof of Lemma 3.1 is completed.

1.3 Appendix C. Proof of Lemma 3.2

First, for any \(x(t)=(x_1(t),x_2(t),\ldots ,x_n(t))^T\in \overline{\Omega }_R\cap \mathbb {P}\) and \(y(t)=(y_1(t),y_2(t),\ldots ,y_n(t))^T\in \varphi (x)\). There exists a measurable function \(\gamma =(\gamma _1,\gamma _2,\ldots ,\gamma _n)^T:[0,\mathcal {T})\rightarrow \mathbb {R}^n\) such that \(\gamma _i(t)\in \overline{co}[f_i(x_i(t))]\) with \( |\gamma _i(t)|\leqslant \max _{0\leqslant s\leqslant R}\{W_i(s)\} (i=1,2,\ldots ,n)\) for a.e. \(t\in [0, \mathcal {T})\) and

$$\begin{aligned} y_i(t)&=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v>0, \nonumber \\ i&=1,2,\ldots ,n. \end{aligned}$$
(7.7)

Thus, for \(t\leqslant v\leqslant t+\omega \) and \(x\in \overline{\Omega }_R\cap \mathbb {P}\), we have

$$\begin{aligned} 0<y_i(t) \leqslant G_i\int _t^{t+\omega }q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v, \end{aligned}$$

which implies

$$\begin{aligned} |y_i(t)|_{\infty }&\leqslant G_i\int _t^{t+\omega }q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v, \nonumber \\ i&=1,2,\ldots ,n. \end{aligned}$$

From (7.7), for \(t\leqslant v\leqslant t+\omega \) and \(x\in \overline{\Omega }_R\cap \mathbb {P}\), we also have

$$\begin{aligned} y_i(t)&\geqslant g_i\int _t^{t+\omega }q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v \\&\geqslant \dfrac{g_i}{G_i}|y_i(t)|_{\infty }\geqslant \kappa _i|y_i(t)|_{\infty },\ \ i=1,2,\ldots ,n. \end{aligned}$$

Therefore, for any \(x\in \overline{\Omega }_R\cap \mathbb {P}\) and \(y\in \varphi (x)\), we have \(y\in \mathbb {P}\). That is, \(\varphi (x)\in \mathbb {P}\) for every fixed \(x\in \mathbb {P}\), i.e., \(\varphi :\overline{\Omega }_R\cap \mathbb {P}\rightarrow \mathbb {P}\).

Next, we prove that \(\varphi (x)\) is convex for each \(x\in \overline{\Omega }_R\cap \mathbb {P}\). In fact, for any \(x=(x_1,x_2,\ldots ,x_n)^T\), if \(y=(y_1,y_2,\ldots ,y_n)^T, z=(z_1,z_2,\ldots ,z_n)^T\in \varphi (x)\), then there exist \(\gamma =(\gamma _1,\gamma _2,\ldots ,\gamma _n)^T:[0,\mathcal {T})\rightarrow \mathbb {R}^n\) and \(\eta =(\eta _1,\eta _2,\ldots ,\eta _n)^T:[0,\mathcal {T})\rightarrow \mathbb {R}^n\) with \(\gamma _i(t)\in \overline{co}[f_i(x_i(t))]\) and \(\eta _i(t)\in \overline{co}[f_i(x_i(t))]\) for a.e. \(t\in [0,\mathcal { T})\), such that for each \(t\in [0,\mathcal { T})\) we have

$$\begin{aligned} y_i(t)&=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v, \\ i&=1,2,\ldots ,n, \end{aligned}$$

and

$$\begin{aligned} z_i(t)&=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,\eta )\hbox {d}v, \\ i&= 1,2,\ldots ,n. \end{aligned}$$

Let \(0\leqslant \alpha \leqslant 1\). Then for each \(t\in [0,\omega ]\) we have

$$\begin{aligned}&[\alpha y_i(t)+(1-\alpha )z_i(t)]=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v)) \\&\quad \mathcal {F}_i(v,\alpha \gamma +(1-\alpha )\eta )\hbox {d}v \\&\quad \in \int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,f)\hbox {d}v, \end{aligned}$$

that is

$$\begin{aligned}{}[\alpha y_i(t)+(1-\alpha )z_i(t)]\in \varphi _i(x)(t),\ \ i=1,2,\ldots ,n. \end{aligned}$$

Hence,

$$\begin{aligned}{}[\alpha y(t)+(1-\alpha )z(t)]\in \varphi (x). \end{aligned}$$

Finally, it is easy to see that \(\varphi (x)\) is closed. The proof of Lemma 3.2 is completed.

1.4 Appendix D. Proof of Lemma 3.3

It is enough to show that \(\varphi :\overline{\Omega }_R\cap \mathbb {P}\rightarrow P_{kc}(\mathbb {P})\) is a compact map. According to the Ascoli-Arzela Theorem, it suffices to show that \(\varphi (\overline{\Omega }_R\cap \mathbb {P})\) is an uniformly bounded and equi-continuous set. For any \(x=(x_1,x_2,\ldots ,x_n)^T\in \overline{\Omega }_R\cap \mathbb {P}\) and \(y=(y_1,y_2,\ldots ,y_n)^T\in \varphi (x)\). There exists a measurable function \(\gamma =(\gamma _1,\gamma _2,\ldots ,\gamma _n)^T:[0,\mathcal {T})\rightarrow \mathbb {R}^n\) such that \(\gamma _i(t)\in \overline{co}[f_i(x_i(t))]\) with \( |\gamma _i(t)|\leqslant \max _{0\leqslant s\leqslant R}\{W_i(s)\}\ (i=1,2,\ldots ,n)\) for a.e. \(t\in [0, \mathcal {T})\) and

$$\begin{aligned} y_i(t)&=\int _t^{t+\omega }G_i(t,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v>0, \\ i&=1,2,\ldots ,n. \end{aligned}$$

Hence

$$\begin{aligned} |y_i(t)|_{\infty }&\leqslant G_iq_i^M\int _t^{t+\omega }\mathcal {F}_i(v,\gamma )\hbox {d}v \\&\leqslant G_iq_i^M\omega \left[ \sum _{j=1}^n(a_{ij}^M+b_{ij}^M+c_{ij}^M) \right. \\&\left. \left( \max _{0\leqslant s\leqslant R}\{W_i(s)\}+||\psi ||_{\infty }\right) +I_i^M\right] , \\ i&=1,2,\ldots ,n, \end{aligned}$$

where \(||\psi ||_{\infty }=\hbox {ess}\sup _{s\in (-\infty ,0]}|\psi (s)|\). Which yields

$$\begin{aligned}&||y||_{X}\leqslant \max _{1\leqslant i\leqslant n} \\&\quad \left\{ G_iq_i^M\omega \left[ \sum _{j=1}^n\left( a_{ij}^M+b_{ij}^M+c_{ij}^M\right) \left( \max _{0\leqslant s\leqslant R}\{W_i(s)\} \right. \right. \right. \\&\quad \left. \left. \left. +||\psi ||_{\infty }\right) +I_i^M\right] \right\} , \\&\quad \forall x\in \overline{\Omega }_R\cap \mathbb {P}. \end{aligned}$$

Thus, \(\varphi (\overline{\Omega }_R\cap \mathbb {P})\) is an uniformly bounded set for all \(x\in \overline{\Omega }_R\cap \mathbb {P}\).

Let \(t_1, t_2\in [0,\omega ]\), then for any \(x\in \overline{\Omega }_R\cap \mathbb {P}\) and each \(i=1,2, \ldots ,n\), we have

According to the mean value theorem of derivations, we obtain

$$\begin{aligned}&|G_i(t_1,v)-G_i(t_2,v)|=|G_i(t_1+\lambda (t_2-t_1),v) \\&\qquad \times q_i(x_i(t_1+\lambda (t_2-t_1)))d_i(t_1+\lambda (t_2-t_1))||t_2-t_1| \\&\quad \leqslant G_iq_i^Md_i^M|t_2-t_1|, \end{aligned}$$

where \(0<\lambda <1\). And

$$\begin{aligned}&\left| \int _{t_1}^{t_2}G_i(t_2,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v\right| \\&\quad \leqslant G_iq_i^M\left[ \sum _{j=1}^n\left( a_{ij}^M+b_{ij}^M+c_{ij}^M\right) \left( \max _{0\leqslant s\leqslant R}\{W_i(s)\} \right. \right. \\&\qquad \left. \left. +\,||\psi ||_{\infty }\right) +I_i^M\right] |t_2-t_1|, \\&\quad \left| \int _{t_1+\omega }^{t_2+\omega }G_i(t_2,v)q_i(x_i(v))\mathcal {F}_i(v,\gamma )\hbox {d}v\right| \\&\quad \leqslant G_iq_i^M\left[ \sum _{j=1}^n\left( a_{ij}^M+b_{ij}^M+c_{ij}^M\right) \right. \\&\qquad \left. \times \left( \max _{0\leqslant s\leqslant R}\{W_i(s)\}+||\psi ||_{\infty }\right) +I_i^M\right] |t_2-t_1|. \end{aligned}$$

Hence

$$\begin{aligned} |y_i(t_1)-y_i(t_2)|\leqslant M_i|t_2-t_1|, \end{aligned}$$

where \(M_i=G_iq_i^M(q_i^Md_i^M+2)[\sum _{j=1}^n(a_{ij}^M+b_{ij}^M+c_{ij}^M)(\max _{0\leqslant s\leqslant R}\{W_i(s)\}+||\psi ||_{\infty })+I_i^M]\).

As a result we have that

$$\begin{aligned} ||y(t_1)-y_2(t_2)||_{X}\leqslant \max _{1\leqslant i\leqslant n}\{M_i\}|t_2-t_1|{\rightarrow } 0 \hbox {as} t_2{\rightarrow } t_1. \end{aligned}$$

Hence, \(\varphi (\overline{\Omega }_R\cap \mathbb {P})\) is an equi-continuous set in X.

Therefore, the multi-valued map \(\varphi :\overline{\Omega }_R\cap \mathbb {P}\rightarrow P_{cp,cv}(\mathbb {P})\) is a k-set-contractive map with \(k=0\).

1.5 Appendix E. Proof of Lemma 3.4

We will show that \(\varphi \) has closed graph. Denote

$$\begin{aligned} \digamma (t,x)= & {} (q_1(x_1(t))\mathcal {F}_1(t,f),q_2(x_2(t)) \\&\mathcal {F}_2(t,f),\ldots ,q_n(x_n(t))\mathcal {F}_n(t,f))^T. \end{aligned}$$

Let \(|||\digamma (t,x)|||=\sup \{|u|: u\in \digamma (t,x)\}\) and \(L^1([0,\omega ],\mathbb {R}^n)\) be the Banach space of all functions \(u=(u_1,u_2,\ldots ,u_n)^T:[0,\omega ]\rightarrow \mathbb {R}^n\) which are Lebesgue integrable. Define the multi-valued operator

$$\begin{aligned} F=(F_1,F_2,\ldots ,F_n)^T:X\rightarrow L^1([0,\omega ],\mathbb {R}^n) \end{aligned}$$

by letting

$$\begin{aligned}&F_i(x)=\{u_i\in L^1([0,\omega ],\mathbb {R}):u_i(t)\in q_i(x_i(t))\mathcal {F}_i(t,f)\\&\quad \hbox {for} \quad \hbox {a.e.}\ t\in [0,\omega ] \},\ \ \ i=1,2,\cdots ,n. \end{aligned}$$

It is easy to show that \(\digamma (t,x)\) is a \(L^1\)-Carathéodory map and the set F(x) is non-empty for each fixed \(x\in \overline{\Omega }_R\cap \mathbb {P}\).

Consider the linear continuous operator \(\mathfrak {L}: L^1([0,\omega ], \mathbb {R}^n)\rightarrow C([0,\omega ], \mathbb {R}^n)\),

$$\begin{aligned}&\mathfrak {L}u(t)\,=\,\left( \int _t^{t+\omega }G_1(t,v)u_1(v)\hbox {d}v,\right. \\&\qquad \left. \int _t^{t+\omega }G_2(t,v)u_2(v)\hbox {d}v,\ldots , \right. \\&\qquad \left. \int _t^{t+\omega }G_n(t,v)u_n(v)\hbox {d}v\right) ^T,\ \ t\in [0,\omega ]. \end{aligned}$$

Hence, it follows from Lemma 2.3 that \(\varphi =\mathfrak {L}\circ F\) is a closed graph operator. We should be point out that USC is equivalent to the condition of being a closed graph multi-valued map when the map has non-empty compact values, that is to say, we have shown that \(\varphi \) is USC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Huang, L. Periodicity and multi-periodicity of generalized Cohen–Grossberg neural networks via functional differential inclusions. Nonlinear Dyn 85, 67–86 (2016). https://doi.org/10.1007/s11071-016-2667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2667-7

Keywords

Navigation