×

Low regularity conservation laws for integrable PDE. (English) Zbl 1428.35452

Summary: We present a general method for obtaining conservation laws for integrable PDE at negative regularity and exhibit its application to KdV, NLS, and mKdV. Our method works uniformly for these problems posed both on the line and on the circle.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Appl. Math. 53(4), 249-315 (1974) · Zbl 0408.35068 · doi:10.1002/sapm1974534249
[2] Apostol, T.: Mathematical analysis, 2nd edn. Addison-Wesley Publishing Co., Reading, MA (1974) · Zbl 0309.26002
[3] Bona, J.L.; Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278(1287), 555-601 (1975) · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[4] Buckmaster, T.; Koch, H.: The Korteweg-de Vries equation at \[H^{-1}H-1\] regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(5), 1071-1098 (2015) · Zbl 1331.35300 · doi:10.1016/j.anihpc.2014.05.004
[5] R. Carles and T. Kappeler. Norm-inflation for periodic NLS equations in negative Sobolev spaces. Preprint arXiv:1507.04218 · Zbl 1428.35488
[6] Christ, M.; Colliander, J.; Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125(6), 1235-1293 (2003) · Zbl 1048.35101 · doi:10.1353/ajm.2003.0040
[7] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T.: Sharp global well-posedness for KdV and modified KdV on \[{{\mathbb{R}}}\] R and \[{\mathbb{T}}\] T. J. Amer. Math. Soc. 16(3), 705-749 (2003) · Zbl 1025.35025 · doi:10.1090/S0894-0347-03-00421-1
[8] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T.: Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211(1), 173-218 (2004) · Zbl 1062.35109 · doi:10.1016/S0022-1236(03)00218-0
[9] Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27(1), 365-390 (1903) · JFM 34.0422.02 · doi:10.1007/BF02421317
[10] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095-1097 (1967) · Zbl 1061.35520 · doi:10.1103/PhysRevLett.19.1095
[11] Z. Guo. Global well-posedness of Korteweg-de Vries equation in \[H^{-3/4}({{\mathbb{R} \it }})H-3/4\](R). J. Math. Pures Appl. (9) 91(6) (2009), 583-597 · Zbl 1173.35110
[12] D. Hilbert. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Erste Mitteilung). Nachr. Ges. Wiss. Göttingen (1904), 49-91 · JFM 35.0378.02
[13] Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805-809 (1973) · Zbl 0257.35052 · doi:10.1063/1.1666399
[14] R. Jost and A. Pais. On the scattering of a particle by a static potential. Physical Rev. (2) 82(6), (1951), 840-851 · Zbl 0042.45206
[15] T. Kappeler, C. Möhr, and P. Topalov. Birkhoff coordinates for KdV on phase spaces of distributions. Selecta Math. (N.S.) 11(1) (2005), 37-98 · Zbl 1089.37042
[16] Kappeler, T.; Topalov, P.: Global wellposedness of KdV in \[H^{-1}(\mathbb{T},\mathbb{R})H-1\](T,R). Duke Math. J. 135(2), 327-360 (2006) · Zbl 1106.35081 · doi:10.1215/S0012-7094-06-13524-X
[17] T. Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93-128, Adv. Math. Suppl. Stud., 8, Academic Press, New York (1983). · Zbl 0549.34001
[18] Kenig, C.E.; Ponce, G.; Vega, L.: A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9(2), 573-603 (1996) · Zbl 0848.35114 · doi:10.1090/S0894-0347-96-00200-7
[19] R. Killip. On conservation laws for KdV. Research Seminar presented on December 9: at MSRI. CA, USA, Berkeley (2015)
[20] Killip, R.; Conservation laws for integrable PDE. One hour lecture delivered March 16, : at the workshop “Singularity formation and long-time behavior in dispersive PDEs” held at the Mathematical Institute. University of Bonn, Germany (2016)
[21] Kishimoto, N.: Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differential Integral Equations 22(5-6), 447-464 (2009) · Zbl 1240.35461
[22] N. Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Preprint · Zbl 1409.35191
[23] H. Koch. Nonlinear dispersive equations. In: “Dispersive Equations and Nonlinear Waves”, 1-137, Oberwolfach Seminars, 45, Birkhauser/Springer Basel AG, Basel, (2014). · Zbl 1304.35003
[24] H. Koch and D. Tataru. Conserved energies for the cubic NLS in 1-d. Preprint arXiv:1607.02534 · Zbl 1280.35137
[25] Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[26] Lax, P.D.: Periodic solutions of the KdV equation. Comm. Pure Appl. Math. 28, 141-188 (1975) · Zbl 0295.35004 · doi:10.1002/cpa.3160280105
[27] Liu, B.: A priori bounds for KdV equation below \[H^{-3/4}H-3/4\]. J. Funct. Anal. 268(3), 501-554 (2015) · Zbl 1308.35251 · doi:10.1016/j.jfa.2014.06.020
[28] R. M. Miura, C. S. Gardner, and M. D. Kruskal. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Mathematical Phys. 9(8) (1968), 1204-1209 · Zbl 0283.35019
[29] Molinet, L.: A note on ill posedness for the KdV equation. Differential Integral Equations 24(7-8), 759-765 (2011) · Zbl 1249.35292
[30] T. Oh. A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Preprint arXiv:1509.08143 · Zbl 1382.35273
[31] Sasa, N.; Satsuma, J.: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. J. Phys. Soc. Japan 60(2), 409-417 (1991) · Zbl 0920.35128 · doi:10.1143/JPSJ.60.409
[32] B. Simon. Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, RI (2005). · Zbl 1074.47001
[33] A. Sjöberg. On the Korteweg-de Vries equation. Report Dept of Computer Science Upsala University (1967). · Zbl 0179.43101
[34] Sjöberg, A.: On the Korteweg-de Vries equation: existence and uniqueness. J. Math. Anal. Appl. 29, 569-579 (1970) · Zbl 0179.43101 · doi:10.1016/0022-247X(70)90068-5
[35] R. Temam. Sur un problme non linéaire. J. Math. Pures Appl. (9) 48 (1969), 159-172 · Zbl 0187.03902
[36] Zakharov, V.E.; Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz. 61(1), 118-134 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.