×

A priori bounds for KdV equation below \(H^{- \frac{3}{4}}\). (English) Zbl 1308.35251

Summary: We consider the Korteweg-de Vries equation (KdV) on the real line, and prove that the smooth solutions satisfy a priori local in time \(H^s\) bound in terms of the \(H^s\) size of the initial data for \(s \geq - \frac{4}{5}\).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B45 A priori estimates in context of PDEs
35D30 Weak solutions to PDEs

References:

[1] Bekiranov, D., The initial-value problem for the generalized Burgers equation, Differential Integral Equations, 9, 1253-1265 (1996) · Zbl 0879.35131
[2] Bona, J. L.; Smith, R., The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, 278, 1287, 555-601 (1975) · Zbl 0306.35027
[3] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I, II, Geom. Funct. Anal., 3, 107-156 (1993), 209-262 · Zbl 0787.35097
[4] Buckmaster, Tristan; Koch, Herbert, The Korteweg-de-Vries equation at \(H^{- 1}\) regularity · Zbl 1331.35300
[5] Christ, M.; Colliander, J.; Tao, T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003) · Zbl 1048.35101
[6] Christ, M.; Colliander, J.; Tao, T., A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., 254, 2, 368-395 (January 2008) · Zbl 1136.35087
[7] Cohen, A., Existence and regularity for solutions of the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., 71, 2, 143-175 (1979) · Zbl 0415.35069
[8] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Sharp global well-posedness for KdV and modified KdV on \(R\) and \(T\), J. Amer. Math. Soc., 16, 705-749 (2003) · Zbl 1025.35025
[9] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \(R^3\), Ann. of Math., 167, 767-865 (2008) · Zbl 1178.35345
[10] Deift, P.; Venakides, S.; Zhou, X., An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation, Proc. Natl. Acad. Sci. USA, 95, 2, 450-454 (1998), (electronic) · Zbl 0894.35097
[11] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), 137, 2, 295-368 (1993) · Zbl 0771.35042
[12] Dix, D. B., Nonuniqueness and uniqueness in the initial-value problem for Burgers equation, SIAM J. Math. Anal., 27, 3, 708-724 (1996) · Zbl 0852.35123
[13] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1103.35360
[14] Ginibre, J.; Tsutsumi, Y.; Velo, G., Existence and uniqueness of solutions for the generalized Korteweg de Vries equation, Math. Z., 203, 1, 9-36 (1990) · Zbl 0662.35114
[15] Grünrock, A., A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations, 18, 12, 1333-1339 (2005) · Zbl 1212.35412
[16] Guo, Zihua, Global well-posedness of Korteweg-de Vries equation in \(H^{- \frac{3}{4}}(R)\), J. Math. Pures Appl. (9), 91, 6, 583-597 (2009) · Zbl 1173.35110
[17] Kappeler, T.; Topalov, P., Global wellposedness of KdV in \(H^{- 1}(T, R)\), Duke Math. J., 135, 2, 327-360 (2006) · Zbl 1106.35081
[18] Kappeler, Thomas; Perry, Peter; Shubin, Mikhail; Topalov, Peter, The Miura map on the line, Int. Math. Res. Not. IMRN, 50, 3091-3133 (2005) · Zbl 1089.35058
[19] Kato, T., The Cauchy problem for the Korteweg-de Vries equation, (Nonlinear Partial Differential Equations and Their Applications: College de France Seminar, Volume I. Nonlinear Partial Differential Equations and Their Applications: College de France Seminar, Volume I, Paris, 1978/1979 (1981), Pitman: Pitman Boston, Mass.), 293-307 · Zbl 0542.35064
[20] Kenig, C.; Ponce, G.; Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries, J. Amer. Math. Soc., 4, 323-347 (1991) · Zbl 0737.35102
[21] Kenig, C.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 4, 527-620 (1993) · Zbl 0808.35128
[22] Kenig, C.; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equations, J. Amer. Math. Soc., 9, 573-603 (1996) · Zbl 0848.35114
[23] Kenig, C.; Ponce, G.; Vega, L., On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106, 3, 617-633 (2001) · Zbl 1034.35145
[24] Kishimoto, N., Well-posedness of the Cauchy problem for the KdV equation at the critical regularity, (Harmonic Analysis and Nonlinear Partial Differential Equations. Harmonic Analysis and Nonlinear Partial Differential Equations, Kôkyûroku Bessatsu, vol. B18 (2010), Res. Inst. Math. Sci. (RIMS): Res. Inst. Math. Sci. (RIMS) Kyoto), 57-73 · Zbl 1211.35241
[25] Koch, H.; Tataru, D., A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN, 16, 36 (2007), Article ID rnm053 · Zbl 1169.35055
[26] Koch, H.; Tataru, D., Energy and local energy bounds for the 1-D cubic NLS equation in \(H^{- 1 / 4}\), Ann. Inst. Henri Poincaré Anal. Non Lineaire, 29, 6, 955-988 (2012) · Zbl 1280.35137
[27] Lax, P. D.; Levermore, C. D., The small dispersion limit of the Korteweg-de Vries equation. I, II, III, Comm. Pure Appl. Math., 36, 3, 5, 6, 253290 (1983), 571593, 809829
[28] Molinet, L.; Ribaud, F., On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not. IMRN, 37, 1979-2005 (2002) · Zbl 1031.35126
[29] Molinet, L., A note on ill posedness for the KdV equation, Differential Integral Equations, 24, 7-8, 759-765 (2011) · Zbl 1249.35292
[30] Nakanishi, K.; Takaoka, H.; Tsutsumi, Y., Counterexamples to bilinear estimates related to the KdV equation and the nonlinear Schrödinger equation, Methods Appl. Anal., 8, 4, 569-578 (2001) · Zbl 1011.35119
[31] Tao, T., Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics (2006) · Zbl 1106.35001
[32] Tataru, D., The \(X_\theta^s\) spaces and unique continuation for solutions to the semilinear wave equation, Comm. Partial Differential Equations, 21, 5-6, 841-887 (1996) · Zbl 0853.35017
[33] Tomas, P., A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81, 477-478 (1975) · Zbl 0298.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.