×

A new class of rational cubic spline fractal interpolation function and its constrained aspects. (English) Zbl 1428.28016

Summary: This paper pertains to the area of shape preservation and sets a theoretical foundation for the applications of preserving constrained nature of a given constraining data in fractal interpolation functions (FIFs) techniques. We construct a new class of rational cubic spline FIFs (RCSFIFs) with a preassigned quadratic denominator with two shape parameters, which includes classical rational cubic interpolant [M. Sarfraz et al. [ibid. 216, No. 7, 2036–2049 (2010; Zbl 1192.65028)] as special case and improves the sufficient conditions for positivity. Convergence analysis of RCSFIF to the original function in \(\mathcal{C}^1\) is studied. In order to meet the needs of practical design or overcome the drawback of the tension effect in the proposed RCSFIFs, we improve our method by introducing a new tension parameter \(w_i\) and construct a new class of rational cubic spline FIFs with three shape parameters. The scaling factors and shape parameters have a predictable adjusting role on the shape of curves. The elements of the rational iterated function system in each subinterval are identified befittingly so that the graph of the resulting \(\mathcal{C}^1\)-rational cubic spline FIF constrained (i) within a prescribed rectangle (ii) above a prescribed straight line (iii) between two piecewise straight lines. These parameters include, in particular, conditions on the positivity of the \(\mathcal{C}^1\)-rational cubic spline FIF. Several numerical examples are presented to ascertain the correctness and usability of developed scheme and to suggest how these schemes outperform their classical counterparts.

MSC:

28A80 Fractals
26A48 Monotonic functions, generalizations
41A05 Interpolation in approximation theory
41A20 Approximation by rational functions
65D05 Numerical interpolation
65D07 Numerical computation using splines

Citations:

Zbl 1192.65028

Software:

pchip
Full Text: DOI

References:

[1] Jayaraman, A.; Belmonte, A., Oscillations of a solid sphere falling through a worm like micellar fluid, Phys. Rev. E, 67, 6 (2003)
[2] Abbas, M.; Majid, A. A.; Ali, J. M., Positivity-preserving rational bi-cubic spline interpolation for 3d positive data, Appl. Math. Comp., 234, 460-476 (2014) · Zbl 1298.65021
[3] Barnsley, M. F., Fractal functions and interpolation, Constr. Approx., 2, 1, 303-329 (1986) · Zbl 0606.41005
[4] Barnsley, M. F.; Harrington, A. N., The calculus of fractal interpolation functions, J. Approx. Theory, 57, 1, 14-34 (1989) · Zbl 0693.41008
[5] Chand, A. K.B.; Kapoor, G. P., Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44, 2, 655-676 (2006) · Zbl 1136.41006
[6] Chand, A. K.B.; Viswanathan, P., A constructive approach to cubic hermite fractal interpolation function and its constrained aspects, BIT Numer. Math., 53, 841-865 (2013) · Zbl 1283.65010
[7] Chand, A. K.B.; Vijender, N.; Navascués, M. A., Shape preservation of scientific data through rational fractal splines, Calcolo, 51, 329-362 (2013) · Zbl 1315.65014
[8] Chand, A. K.B.; Vijender, N.; Agarwal, R. P., Rational iterated function system for positive/monotonic shape preservation, Adv. Differ. Equ., 30, 1-19 (2014) · Zbl 1343.28002
[9] Chand, A. K.B.; Katiyar, S. K.; Viswanathan, P., Approximation using hidden variable fractal interpolation functions, J. Fractal Geom., 2, 1, 81-114 (2015) · Zbl 1318.28017
[10] Dalla, L.; Drakopoulos, V., On the parameter identification problem in the plane and the polar fractal interpolation, J. Approx. Theory, 101, 289-302 (1999) · Zbl 0945.41001
[11] Duan, Q.; Djidjeli, K.; Price, W. G.; Twizell, E. H., A rational cubic spline based on function values, Comput. Graph., 22, 479-486 (1998)
[12] Duan, Q.; Xu, G.; Liu, A.; Wang, X.; Cheng, F., Constrained interpolation using rational cubic spline with linear denominators, Korean J. Comput. Appl. Math., 6, 203-215 (1999) · Zbl 0955.65005
[13] Evertsz, C. J.G., Fractal geometry of financial time series, Fractals, 3, 3, 609-616 (1995) · Zbl 0869.62073
[14] Fritsch, F. N.; Carlson, R. E., Monotone piecewise cubic interpolation, SIAM J. Numer. Anal., 17, 2, 238246 (1980) · Zbl 0423.65011
[15] Gregory, J. A.; Delbourgo, R., Piecewise rational quadratic interpolation to monotonic data, IMA J. Numer. Anal., 2, 123-130 (1982) · Zbl 0481.65004
[16] Gregory, J. A.; Delbourgo, R., Determination of derivative parameters for a monotonic rational quadratic interpolant, IMA J. Numer. Anal., 5, 1 (1985) · Zbl 0586.65005
[17] Gregory, J. A.; Delbourgo, R., Shape preserving piecewise rational interpolation., SIAM J. Stat. Comput., 6, 4, 967-976 (1985) · Zbl 0586.65006
[18] Hussain, M.; Hussain, M. Z.; Crips, J. R., \(C^2\) rational quintic function, J. Prime Res. Math., 5, 115-123 (2009) · Zbl 1209.68584
[19] Massopust, P. R., Fractal Functions, Fractal Surfaces and Wavelets (1994), Academic Press · Zbl 0817.28004
[20] Schimdt, J. W.; Heß, W., Positivity of cubic polynomial on intervals and positive spline interpolation, BIT Numer. Anal., 28, 340-352 (1988) · Zbl 0642.41007
[21] Navascués, M. A.; Viswanathan, P.; Chand, A. K.B.; Sebastian, M. V.; Katiyar, S. K., Fractal bases for Banach spaces of smooth functions, Bull. Aus. Math. Soc., 92, 405-419 (2015) · Zbl 1332.28014
[22] Sarfraz, M.; Hussain, M. Z., Data visualization using rational spline interpolation, J. Comp. Appl. Math., 189, 513-525 (2006) · Zbl 1086.65010
[23] Sarfraz, M.; Hussain, M. Z.; Nisar, A., Positive data modeling using spline function, Appl. Math. Comp., 216, 2036-2049 (2010) · Zbl 1192.65028
[24] Sarfraz, M.; Hussain, M. Z.; Hussain, M., Shape-preserving curve interpolation, Int. J. Comp. Math., 89, 1, 35-53 (2012) · Zbl 1237.68237
[25] Katiyar, S. K.; Chand, A. K.B.; Navascués, M. A., Hidden variable A-fractal functions and their monotonicity aspects, Rev. R. Acad. Cienc. Zaragoza, 71, 7-30 (2016)
[26] Véhel, J. L.; Daoudi, K.; Lutton, E., Fractal modeling of speech signals, Fractals, 2, 3, 379-382 (1994) · Zbl 1126.94308
[27] Viswanathan, P.; Chand, A. K.B., A fractal procedure for monotonicity preserving interpolation, Appl. Math. Comp., 247, 190-204 (2014) · Zbl 1338.65030
[28] Wornell, G. W., Signal Processing with Fractals: A Wavelet Based Approach (1995), Prentice Hall
[29] Xin-Fu, L.; Xiao-Fan, L., Seismic data reconstruction with fractal interpolation, Chin. J. Geophys., 51, 4, 855-861 (2008)
[30] Yong, L. L.; Xin, T., Fractal fitting research on stock prices, Proceedings of the Congress on Image and Signal Processing, volume 4, 49-53 (2008)
[31] Shi, K.; Liu, X.; Zhu, H.; Zhong, S.; Zeng, Y.; Yin, C., Novel delay-dependent master-slave synchronization criteria of chaotic lure systems with time-varying-delay feedback control, Appl. Math. Comp., 282, 137-154 (2016) · Zbl 1410.93060
[32] Wang, J.; Shi, K.; Huang, Q.; Zhong, S.; Zhang, D., Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout, Appl. Math. Comp., 335, 211-230 (2018) · Zbl 1427.93144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.