×

Approximation using hidden variable fractal interpolation function. (English) Zbl 1318.28017

Given a vector-valued function \(f:I\to \mathbb{R}^2\), where \(I\) denotes a compact interval in \(\mathbb{R}\), and a family of upper triangular \(2\times 2\)-matrix \(\{A\}_{n = 0}^{N-1}\), \(1 < N\in \mathbb{N}\), the authors associate with the pair \((f,A)\) hidden variable fractal interpolation functions denoted by \(f[A]\). The entries in the matrices \(A_n\) determine the regularity properties of the ensuing hidden variable fractal function \(f[A]\). Estimates for the approximation error between \(f\) and \(f[A]\) are derived and suitable values for the entries in the matrices \(A_n\) identified to ensure the preservation of monotonicity and \(C^1\)-continuity of \(f\).

MSC:

28A80 Fractals
41A05 Interpolation in approximation theory
41A10 Approximation by polynomials
Full Text: DOI

References:

[1] G. Bachman and L. Narici, Functional analysis. Reprint of the 1966 original. Dover Publications, Mineola, N.Y., 2000. · Zbl 0983.46001
[2] M. F. Barnsley, Fractals everywhere. Academic Press, Inc., Boston, MA, etc., 1988. 2nd ed. revised with the assistance of and with a foreword by Hawley Rising, III. Academic Press Professional, Boston, MA, 1993. 3rd revised ed., Dover Pub- lications, Mineola, N.Y., 2012. · Zbl 0691.58001
[3] M. F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2 (1986), no 4, 303-329. · Zbl 0606.41005 · doi:10.1007/BF01893434
[4] M. F. Barnsley and A. N. Harrington, The calculus of fractal interpolation functions. J. Approx. Theory 57 (1989), no. 1, 14-34. · Zbl 0693.41008 · doi:10.1016/0021-9045(89)90080-4
[5] M. F. Barnsley, J. Elton, D. Hardin, and P. Massopust, Hidden variable fractal inter- polation functions. SIAM J. Math. Anal. 20 (1989), no. 5, 1218-1242. · Zbl 0704.26009 · doi:10.1137/0520080
[6] B. Bollabás, Linear analysis. An introductory course. 2nd ed. Cambridge Math- ematical Textbooks Cambridge University Press, Cambridge, 1999. · Zbl 0923.46002
[7] S. Butt and K. W. Brodlie, Preserving positivity using piecewise cubic interpolation. Comput. &amp; Graphics 17 (1993), no. 1, 55-64.
[8] A. K. B. Chand and G. P. Kapoor, Generalized cubic spline fractal interpola- tion functions. SIAM J. Numer. Anal. 44 (2006), no. 2, 655-676. · Zbl 1136.41006 · doi:10.1137/040611070
[9] A. K. B. Chand and G. P. Kapoor, Stability of affine coalescence hidden vari- able fractal interpolation functions. Nonlinear Anal. 68 (2008), no. 12, 3757-3770. · Zbl 1147.26004 · doi:10.1016/j.na.2007.04.017
[10] A. K. B. Chand and P. Viswanathan, A constructive approach to cubic Hermite frac- tal interpolation function and its constrained aspects. BIT 53 (2013), no. 4, 841-865. · Zbl 1283.65010 · doi:10.1007/s10543-013-0442-4
[11] P. Costantini, Curve and surface design using variable degree polynomial splines. Comput Aided Geom Des. 17 (2000), no. 5, 426-446. · Zbl 0938.68128 · doi:10.1016/S0167-8396(00)00010-8
[12] L. Dalla and V. Drakopoulos, On the parameter identification problem in the plane and the polar fractal interpolation. J. Approx. Theory 101 (1999), 289-302. · Zbl 0945.41001 · doi:10.1006/jath.1999.3380
[13] J. A. Gregory and R. Delbourgo, Shape preserving piecewise rational interpolation. SIAM J. Stat. Comput. 6 (1985), no. 4, 967-976. · Zbl 0586.65006 · doi:10.1137/0906065
[14] X. Han, Convexity-preserving piecewise rational quartic interpolation. SIAM. J. Nu- mer. Anal. 46 (2008), no. 2, 920-929. · Zbl 1165.65005 · doi:10.1137/060671577
[15] J. Lévy-Véhel and E. Lutton, Optimization of fractal functions using genetic algo- rithms. INRIA, Rapport de reserche no. 1941, 1993.
[16] P. Manousopoulos, V. Drakopoulos, and T. Theoharis, Parameter identification of 1D fractal interpolation functions using bounding volumes. J. Comput. Appl. Math. 233 (2009), no. 4, 1063-1082. · Zbl 1177.65024 · doi:10.1016/j.cam.2009.08.115
[17] M. A. Marvasti and W. Strahle, Fractal geometry analysis of turbulent data. Signal Processing 41 (1995), no. 2, 191-201. · Zbl 0880.76034 · doi:10.1016/0165-1684(94)00100-E
[18] P. Massopust, Fractal functions, fractal surfaces, and wavelets. Academic Press, San Diego, CA, 1994. · Zbl 0817.28004
[19] M. A. Navascués, Fractal polynomial interpolation. Z. Anal. Anwendungen 24 (2005), no. 2, 401-418. · Zbl 1082.28006 · doi:10.4171/ZAA/1248
[20] M. A. Navascués, Fractal approximation. Complex Anal. Oper. Theory 4 (2010), no. 4, 953-974. · Zbl 1202.28013 · doi:10.1007/s11785-009-0033-1
[21] M. A. Navascués and A. K. B. Chand, Fundamental sets of fractal functions. Acta Appl. Math. 100 (2008), no. 3, 247-261. · Zbl 1132.28005 · doi:10.1007/s10440-007-9182-2
[22] M. A. Navascués and M. V. Sebastián, Construction of affine fractal functions close to classical interpolants. J. Comp. Anal. Appl. 9 (2007), no. 3, 271-285. · Zbl 1128.28008
[23] H. Raun, J. Z. Sha, and W. Y. Su, Counterexamples in parameter identification prob- lem of the fractal interpolation functions. J. Approx. Theory 122 (2003), no. 1, 121-128. · Zbl 1024.41001 · doi:10.1016/S0021-9045(03)00028-5
[24] J. W. Schimdt and W. Heß, Positivity of cubic polynomial on intervals and positive spline interpolation. BIT 28 (1988), no. 2, 340-352. · Zbl 0642.41007 · doi:10.1007/BF01934097
[25] P. Viswanathan and A. K. B. Chand, Fractal rational functions and their approxima- tion properties. J. Approx. Theory 185 (2014), 31-50. · Zbl 1304.41014 · doi:10.1016/j.jat.2014.05.013
[26] P. Viswanathan and A. K. B. Chand, A fractal procedure for monotonicity preserving interpolation. Appl. Math. Comput. 247 (2014), 190-204. · Zbl 1338.65030
[27] P. Viswanathan and A. K. B. Chand, \?-fractal rational splines for constrained inter- polation. Elect. Tran. Numer. Anal. 41 (2014), 420-442.
[28] P. Viswanathan and A. K. B. Chand, On cubic Hermite coalescence hidden variable fractal interpolation functions. Appl. Math. J. Chinese Univ. Ser. B 30 (2015), no. 1, 55-76. · Zbl 1340.41003
[29] H. Y. Wang and J. S. Yu, Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175 (2013), 1-18. · Zbl 1303.28014 · doi:10.1016/j.jat.2013.07.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.