×

Moduli spaces of framed sheaves and quiver varieties. (English) Zbl 1428.14017

J. Geom. Phys. 118, 20-39 (2017); corrigendum and addendum ibid. 121, 176-179 (2017).
Summary: In the first part of this paper we provide a survey of some fundamental results about moduli spaces of framed sheaves on smooth projective surfaces. In particular, we outline a result by Bruzzo and Markushevich, and discuss a few significant examples. The moduli spaces of framed sheaves on \(\mathbb{P}^2\), on multiple blowup of \(\mathbb{P}^2\) are described in terms of ADHM data and, when this characterization is available, as quiver varieties.
The second part is devoted to a detailed study of framed sheaves on the Hirzebruch surface \(\varSigma_n\) in the case when the invariant expressing the necessary and sufficient condition for the nonemptiness of moduli spaces attains its minimum (what we call the “minimal case”). Our main result is that, under this assumption, the corresponding moduli space is isomorphic to a Grassmannian (when \(n = 1\)), or to the direct sum of \(n - 1\) copies of the cotangent bundle of a Grassmannian (when \(n \geq 2\)). Finally, by slightly generalizing a construction due to Nakajima, we prove that these moduli spaces admit a description as quiver varieties.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
16G20 Representations of quivers and partially ordered sets

References:

[1] Donaldson, S. K., Instantons and geometric invariant theory, Comm. Math. Phys., 93, 453-460 (1984) · Zbl 0581.14008
[2] Atiyah, M. F.; Hitchin, N. J.; Drinfel’d, V. G.; Manin, Y. I., Construction of instantons, Phys. Lett. A, 65, 185-187 (1978) · Zbl 0424.14004
[3] Barth, W., Moduli of vector bundles on the projective plane, Invent. Math., 42, 63-91 (1977) · Zbl 0386.14005
[4] Hulek, K., On the classification of stable rank-\(r\) vector bundles over the projective plane, (Hirschowitz, A., Vector Bundles and Differential Equations (Proc. Conf., Nice, 1979). Vector Bundles and Differential Equations (Proc. Conf., Nice, 1979), Progr. Math., vol. 7 (1980), Birkhäuser: Birkhäuser Boston, Mass.), 113-144 · Zbl 0446.14006
[5] Okonek, C.; Schneider, M.; Spindler, H., Vector Bundles on Complex Projective Spaces (1980), Birkhäuser · Zbl 0438.32016
[6] Kirwan, F. C., (Cohomology of Quotients in Symplectic and Algebraic Geometry. Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, vol. 31 (1984), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0553.14020
[7] Kempf, G.; Ness, L., The length of vectors in representation spaces, (Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978). Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732 (1979), Springer: Springer Berlin, Heidelberg), 233-243 · Zbl 0407.22012
[8] Kronheimer, P. B.; Nakajima, H., Yang-Mills instantons on ALE gravitational instantons, Math. Ann., 288, 263-307 (1990) · Zbl 0694.53025
[9] Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76, 365-416 (1994) · Zbl 0826.17026
[10] Ginzburg, V., Lectures on Nakajima’s quiver varieties, (Brion, M., Geometric Methods in Representation Theory. I. Geometric Methods in Representation Theory. I, Sémin. Congr., vol. 24 (2012), Soc. Math. France: Soc. Math. France Paris), 143-197 · Zbl 1305.16009
[11] Nakajima, H., Quiver varieties and Kac-Moody algebras, Duke Math. J., 91, 515-560 (1998) · Zbl 0970.17017
[12] Schiffmann, O., Variétés carquois de Nakajima (d’après Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, et al.), Astérisque, 311, 295-344 (2008), Séminaire Bourbaki, vol. 2006/2007, Exp. No. 976 · Zbl 1151.14026
[13] Lübke, M., The analytic moduli space of framed vector bundles, J. Reine Angew. Math., 441, 45-59 (1993) · Zbl 0770.32010
[14] Huybrechts, D.; Lehn, M., Stable pairs on curves and surfaces, J. Algebraic Geom., 4, 67-104 (1995) · Zbl 0839.14023
[15] Huybrechts, D.; Lehn, M., Framed modules and their moduli, Internat. J. Math., 6, 297-324 (1995) · Zbl 0865.14004
[16] Nevins, T. A., Moduli spaces of framed sheaves on certain ruled surfaces over elliptic curves, Internat. J. Math., 13, 1117-1151 (2002) · Zbl 1058.14060
[17] Nevins, T. A., Representability for some moduli stacks of framed sheaves, Manuscripta Math., 109, 85-91 (2002) · Zbl 1057.14019
[18] Bruzzo, U.; Markushevich, D., Moduli of framed sheaves on projective surfaces, Doc. Math., 16, 399-410 (2011) · Zbl 1222.14022
[19] Sala, F., Symplectic structures on moduli spaces of framed sheaves on surfaces, Cent. Eur. J. Math., 10, 1455-1471 (2012) · Zbl 1302.14036
[20] Bruzzo, U.; Sala, F., Framed sheaves on projective stacks, Adv. Math., 272, 20-95 (2015), With an appendix by Mattia Pedrini · Zbl 1315.14001
[21] King, A., Instantons and holomorphic bundles on the blown-up plane (1987), Worcester College: Worcester College Oxford, (Ph.D. thesis)
[22] Buchdahl, N. P., Stable \(2\)-bundles on Hirzebruch surfaces, Math. Z., 194, 143-152 (1987) · Zbl 0627.14028
[23] Henni, A. A., Monads for framed torsion-free sheaves on multi-blow-ups of the projective plane, Internat. J. Math., 25, 1450008 (2014), 42 pages · Zbl 1330.14016
[24] Nakajima, H., (Lectures on HIlbert Schemes of Points on Surfaces. Lectures on HIlbert Schemes of Points on Surfaces, University Lecture Series, vol. 18 (1999), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0949.14001
[25] Nekrasov, N. A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864 (2003) · Zbl 1056.81068
[26] Bruzzo, U.; Fucito, F.; Morales, J. F.; Tanzini, A., Multi-instanton calculus and equivariant cohomology, J. High Energy Phys., 054 (2003), 24 pp (electronic)
[27] Nakajima, H.; Yoshioka, K., Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math., 162, 313-355 (2005) · Zbl 1100.14009
[28] Bartocci, C.; Bruzzo, U.; Rava, C. L.S., Monads for framed sheaves on Hirzebruch surfaces, Adv. Geom., 15, 55-76 (2015), (revised version arXiv:1504.02987v3 [math.AG]) · Zbl 1316.14023
[30] Rava, C. L.S., ADHM data for framed sheaves on Hirzebruch surfaces (2011), SISSA, (Ph.D. thesis)
[31] Lanza, V., Hilbert schemes of points of the total space of \(O_{P^1}(- n)\) as quiver varieties (2015), University of Genoa, (Ph.D. thesis)
[32] Kuznetsov, A., Quiver varieties and Hilbert schemes, Mosc. Math. J., 7, 673-697 (2007) · Zbl 1142.14009
[33] Nakajima, H., Varieties associated with quivers, (Bautista, R.; Martínez-Villa, R.; de la Peña, J. A., Representation Theory of Algebras and Related Topics (Mexico City, 1994). Representation Theory of Algebras and Related Topics (Mexico City, 1994), CMS Conf. Proc., vol. 19 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 139-157 · Zbl 0870.16008
[34] Huybrechts, D.; Lehn, M., The Geometry of Moduli Spaces of Sheaves (2010), Cambridge Mathematical Library, Cambridge University Press: Cambridge Mathematical Library, Cambridge University Press Cambridge · Zbl 1206.14027
[35] King, A., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), 45, 515-530 (1994) · Zbl 0837.16005
[36] Rudakov, A., Stability for an Abelian category, J. Algebra, 197, 231-245 (1997) · Zbl 0893.18007
[37] Crawley-Boevey, W., Geometry of the moment map for representations of quivers, Compos. Math., 126, 257-293 (2001) · Zbl 1037.16007
[38] Biswas, I., Parabolic bundles as orbifold bundles, Duke Math. J., 88, 305-325 (1997) · Zbl 0955.14010
[39] Finkelberg, M.; Rybnikov, L., Quantization of Drinfeld Zastava in type \(A\), J. Eur. Math. Soc. (JEMS), 16, 235-271 (2014) · Zbl 1287.14024
[40] Takayama, Y., Nahm’s equations, quiver varieties and parabolic sheaves, Publ. RIMS Kyoto Univ., 52, 1-41 (2016) · Zbl 1398.14021
[41] Buchdahl, N. P., Monads and bundles on rational surfaces, Rocky Mountain J. Math., 34, 513-540 (2004) · Zbl 1061.14039
[42] Henni, A. A., Monads for framed torsion-free sheaves on multi-blow-ups of the projective plane (2009), SISSA, (Ph.D. thesis)
[43] Bartocci, C.; Macrí, E., Classification of Poisson surfaces, Commun. Contemp. Math., 7, 89-95 (2005) · Zbl 1071.14514
[44] Bottacin, F., Poisson structures on Hilbert schemes of points of a surface and integrable systems, Manuscripta Math., 97, 517-527 (1998) · Zbl 0945.53049
[45] Van den Bergh, M., Double Poisson algebras, Trans. Amer. Math. Soc., 360, 5711-5769 (2008) · Zbl 1157.53046
[46] Bielawski, R., Quivers and Poisson structures, Manuscripta Math., 141, 29-49 (2013) · Zbl 1267.53084
[47] Mumford, D.; Fogarty, J.; Kirwan, F., (Geometric Invariant Theory. Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34 (1994), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0797.14004
[48] Grothendieck, A., Éléments de géométrie algébrique. II. Le langage des schémas, Publ. Math. Inst. Hautes Études Sci., 4 (1960) · Zbl 0118.36206
[49] Bruzzo, U.; Poghossian, R.; Tanzini, A., Poincaré polynomial of moduli spaces of framed sheaves on (stacky) Hirzebruch surfaces, Comm. Math. Phys., 304, 395-409 (2011) · Zbl 1216.81114
[50] Hartshorne, R., (Algebraic Geometry. Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer-Verlag: Springer-Verlag New York, Heidelberg) · Zbl 0367.14001
[51] Bottacin, F., Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math., 121, 421-436 (1995) · Zbl 0829.14019
[52] Bottacin, F., Poisson structures on moduli spaces of framed vector bundles on surfaces, Math. Nachr., 220, 33-44 (2000) · Zbl 1012.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.