×

Continuous wavelet transform of Schwartz tempered distributions. (English) Zbl 1427.46026

Summary: The continuous wavelet transform of Schwartz tempered distributions is investigated and derive the corresponding wavelet inversion formula (valid modulo a constant-tempered distribution) interpreting convergence in \(S'(\mathbb{R})\). But uniqueness theorem for the present wavelet inversion formula is valid for the space \(S'_F(\mathbb{R})\) obtained by filtering (deleting) (i) all non-zero constant distributions from the space \(S'(\mathbb{R})\), (ii) all non-zero constants that appear with a distribution as a union. As an example, in considering the distribution \(\frac{x^2}{1+x^2}=1-\frac{1}{1+x^2}\) we would omit 1 and retain only \(-\frac{1}{1-x^2}\). The wavelet kernel under consideration for determining the wavelet transform are those wavelets whose all the moments are non-zero. As an example, \((1+kx-2x^2)e^{-x^2})\) is such a wavelet. \(k\) is an arbitrary constant. There exist many other classes of such wavelets. In our analysis, we do not use a wavelet kernel having any of its moments zero.

MSC:

46F12 Integral transforms in distribution spaces
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Akhiezer, N. I.; Glazman, I. M., Theory of linear operators in Hilbert space (Vol. I.) (1961), New York, NY: Ungar Publishing Company, New York, NY · Zbl 0098.30702
[2] Boggess, A.; Narcowich, F. J., A first course in wavelets with fourier analysis (2001), New Jersey: Prentice-Hall, Inc, New Jersey · Zbl 1177.42001
[3] Chui, C. K., Introduction to Wavelets (1992), Academic Press Inc · Zbl 0925.42016
[4] Daubechies, I., Ten lectures on wavelets (1990), Massachusetts: Mathematics Department, University of Lowell, Massachusetts · Zbl 0776.42018
[5] Gelfand, I. M.; Shilov, G. E., Generalized functions, 2 (1968), New York and London: Academic Press, New York and London · Zbl 0159.18301
[6] Holschneider, M., Wavelets, An Analysis Tool (1995), New York: The Clarendon Press, Oxford University Press, New York · Zbl 0874.42020
[7] Lebedeva, E. A.; Postinikov, E. B., On alternative wavelet reconstruction formula: A case study of approximate wavelets, Royal Society Open Science, 1, 2, 1140124 (2014) · doi:10.1098/rs05.140124
[8] Pandey, J. N.; Jha, N. K.; Singh, O. P., The continuous wavelet transform in n-dimensions, International Journal of Wavelets, Multiresolution and Information Processing, 14, 5 (2016) · Zbl 1350.42054 · doi:10.1142/S0219691316500375
[9] Pandey, J. N.; Upadhyay, S. K., The continuous Wavelet transform and window functions, Proceedings of the American Mathematical Society, 143, 11, 4759-15 (2015) · Zbl 1338.46052 · doi:10.1090/proc/2015-143-11
[10] Pathak, R. S., The wavelet transform of distributions, Tohoku Mathematical Journal, 56, 411-421 (2004) · Zbl 1078.42029 · doi:10.2748/tmj/1113246676
[11] Pathak, R. S., The wavelet transform (2009), Atlantis Press World Scientific · Zbl 1173.42328
[12] Postnikov, E. B.; Lebedeva, E. A.; Lavrova, A. F., Computational implementation of the inverse continuous wavelet transform without a requirement of the admissibility condition, Applied Mathematics and Computation, 282, 128-136 (2016) · Zbl 1410.42033 · doi:10.1016/j.amc.2016.02.013
[13] Robewicz, S., Metric linear spaces (1972), Warsaw: PWN-Polish Scientific Publishers, Warsaw · Zbl 0226.46001
[14] Weisz, F., Inversion formula for the continuous wavelet transform, Acta Mathematica Hungarica, 138, 3, 237-258 (2013) · Zbl 1289.42096 · doi:10.1007/s10474-012-0263-y
[15] Weisz, F., Inverse continuous wavelet transform, in Pringsheim’s sense on Wiener Amalgam spaces, Acta Mathematica Hungarica (2014) · Zbl 1363.42078 · doi:10.1007/s10474-015-0492-y
[16] Weisz, G., Convergence of the inverse continuous wavelet transform in Wiener amalgam spaces, Analysis, 35, 1, 33-46 (2015) · Zbl 1316.42045 · doi:10.1515/anly-2014-1267
[17] Yosida, K., Functional analysis (1995), Springer Verlag · Zbl 0152.32102
[18] Zemanian, A. H., Distribution theory and transform analysis (1965), McGraw-Hill Book Company · Zbl 0127.07201
[19] Zemanian, A. H., Generalized integral transformation (1968), Inter Science Publishers, John Wiley and Sons Inc · Zbl 0181.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.