×

Computational implementation of the inverse continuous wavelet transform without a requirement of the admissibility condition. (English) Zbl 1410.42033

Summary: In [“On alternative wavelet reconstruction formula: a case study of approximate wavelets”, R. Soc. Open Sci. 1, No. 2, Article ID 140124, 5 p. (2014; doi:10.1098/rsos.140124)], the second and first authors proved that the continuous wavelet transform with non-admissible kernels (approximate wavelets) allows an existence of the exact inverse transform. Here, we consider the computational possibility for the realization of this approach. We provide a modified simpler explanation of the reconstruction formula, restricted on the practical case of real valued finite (or periodic/periodized) samples and the standard (restricted) Morlet wavelet as a practically important example of an approximate wavelet. The provided examples of applications include the test function and the non-stationary electro-physical signals arising in the problem of neuroscience.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets

References:

[1] Mallat, S., A Wavelet Tour of Signal Processing (1999), Academic Press · Zbl 0945.68537
[2] Addison, P., The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (2002), CRC Press · Zbl 1081.42025
[3] Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J. O.; Jenouvrier, S.; Stenseth, N. C., Wavelet analysis of ecological time series, Oecologia, 156, 287-304 (2008)
[4] Galiana-Merino, J. J.; Pla, C.; Fernández-Cortés, A.; Cuezva, S.; Ortiz, J.; Benavente, D., Environmentalwavelettool: Continuous and discrete wavelet analysis and filtering for environmental time series, Comput. Phys. Commun., 185, 2758-2770 (2014)
[5] Katsavrias, C.; Preka-Papadema, P.; Moussas, X., Wavelet analysis on solar wind parameters and geomagnetic indices, Sol. Phys., 280, 2, 623-640 (2012)
[6] Soon, W.; Herrera, V. M.V.; Selvaraj, K.; Traversi, R.; Usoskin, I.; Chen, C.-T. A.; Lou, J.-Y.; Kao, S.-J.; Carter, R. M.; Pipin, V.; Severi, M.; Becaglid, S., A review of holocene solar-linked climatic variation on centennial to millennial timescales: Physical processes, interpretative frameworks and a new multiple cross-wavelet transform algorithm, Earth Sci. Rev., 134, 1-15 (2014)
[7] Postnikov, E. B.; Loskutov, A., Continuous wavelet transform as an effective tool for the detecting of Saturn rings’ structure, (Denis, J. D.; Aldridge, P. D., Space Exploration Research (2009), Nova Publishers), 341-360
[8] Meng, T.; Soliman, A. T.; Shyu, M.-L.; Yang, Y.; Chen, S.-C.; Iyengar, S. S.; Yordy, J. S.; Iyengar, P., Wavelet analysis in current cancer genome research: A survey, IEEE/ACM Trans. Comput. Biol. Bioinf., 10, 1442-14359 (2013)
[9] Worrell, G. A.; Jerbi, K.; Kobayashi, K.; Lina, J. M.; Zelmann, R.; Quyen, M. L.V., Recording and analysis techniques for high-frequency oscillations, Prog. Neurobiol., 98, 265-278 (2012)
[10] Suvichakorn, A.; Lemke, C.; Schuck, A.; Antoine, J.-P., The continuous wavelet transform in MRS, Tutorial text, Marie Curie Research Training Network FAST (2010)
[11] Hramov, A. E.; Koronovskii, A. A.; Makarov, V. A.; Pavlov, A. N.; Sitnikova, E., Wavelet in Neuroscience (2015), Springer: Springer Berlin · Zbl 1317.92003
[12] Sheppard, L.; Stefanovska, A.; McClintock, P., Detecting the harmonics of oscillations with time-variable frequencies, Phys. Rev. E, 83, 016206 (2011)
[13] Karimi, H. R.; Pawlus, W.; Robbersmyr, K. G., Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets, Neurocomputing, 93, 88-99 (2012)
[14] Gu, J.; Xu, H.; Wang, J.; An, T.; Chen, W., The application of continuous wavelet transform based foreground subtraction method in 21 cm sky surveys, Astrophys. J., 773, 38 (2013)
[15] Postnov, D. E.; Neganova, A. Y.; Postnov, D. D.; Brazhe, A. R., Monitoring of rhythms in laser speckle data, J. Innov. Opt. Health Sci., 7, 1450015 (2014)
[16] Lebedeva, E. A.; Postnikov, E. B., On alternative wavelet reconstruction formula: a case study of approximate wavelets, R. Soc. Open Sci., 1, 140124 (2014)
[17] Krupic, J.; Burgess, N.; O’Keefe, J., Neural representations of location composed of spatially periodic bands, Science, 337, 853-857 (2012)
[19] Traub, R. D.; Duncan, R.; Russell, A. J.C.; Baldeweg, T.; Tu, Y.; Cunningham, M. O.; Whittington, M. A., Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 hz) consistent with a network model based on electrical coupling between principal neurons, Epilepsia, 51, 1587-1597 (2010)
[20] Siddiqi, A. H., Applied Functional Analysis: Numerical Methods, Wavelet Methods, and Image Processing (2003), CRC Press
[21] Belluscio, M. A.; Mizuseki, K.; Schmidt, R.; Kempter, R.; Buzsáki, G., Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus, J. Neurosci., 32, 423-435 (2012)
[22] Cunningham, M. O.; Roopun, A.; Schofield, I. S.; Whittaker, R. G.; Duncan, R.; Russell, A.; Jenkins, A.; Nicholson, C.; Whittington, M. A.; Traub, R. D., Glissandi: transient fast electrocorticographic oscillations of steadily increasing frequency, explained by temporally increasing gap junction conductance, Epilepsia, 53, 1205-1214 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.