×

Fixed-time stability analysis of permanent magnet synchronous motors with novel adaptive control. (English) Zbl 1426.93283

Summary: We firstly investigate the fixed-time stability analysis of uncertain permanent magnet synchronous motors with novel control. Compared with finite-time stability where the convergence rate relies on the initial permanent magnet synchronous motors state, the settling time of fixed-time stability can be adjusted to desired values regardless of initial conditions. Novel adaptive stability control strategy for the permanent magnet synchronous motors is proposed, with which we can stabilize permanent magnet synchronous motors within fixed time based on the Lyapunov stability theory. Finally, some simulation and comparison results are given to illustrate the validity of the theoretical results.

MSC:

93D21 Adaptive or robust stabilization
93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 2, 130-141, (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] Shinbrot, T.; Ott, E.; Grebogi, C.; Yorke, J. A., Using chaos to direct trajectories to targets, Physical Review Letters, 65, 26, 3215-3218, (1990) · doi:10.1103/PhysRevLett.65.3215
[3] Shinbrot, T.; Ditto, W.; Grebogi, C.; Ott, E.; Spano, M.; Yorke, J. A., Using the sensitive dependence of chaos (the butterfly effect) to direct trajectories in an experimental chaotic system, Physical Review Letters, 68, 19, 2863-2866, (1992) · Zbl 0969.37512 · doi:10.1103/PhysRevLett.68.2863
[4] Skufca, J. D.; Yorke, J. A.; Eckhardt, B., Edge of chaos in a parallel shear flow, Physical Review Letters, 96, 17, (2006) · doi:10.1103/PhysRevLett.96.174101
[5] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824, (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[6] Wu, J.; Ma, Z.-C.; Sun, Y.-Z.; Liu, F., Finite-time synchronization of chaotic systems with noise perturbation, Kybernetika, 54, 1, 137-149, (2015) · Zbl 1363.34186 · doi:10.14736/kyb-2015-1-0137
[7] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Physics Reports, 366, 1-2, 1-101, (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[8] Ottino, J. M.; Muzzio, F. J.; Tjahjadi, M.; Franjione, J. G.; Jana, S. C.; Kusch, H. A., Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes, Science, 257, 5071, 754-760, (1992) · doi:10.1126/science.257.5071.754
[9] Schiff, S. J.; Jerger, K.; Duong, D. H.; Chang, T.; Spano, M. L.; Ditto, W. L., Controlling chaos in the brain, Nature, 370, 6491, 615-620, (1994) · doi:10.1038/370615a0
[10] Nakata, S.; Miyata, T.; Ojima, N.; Yoshikawa, K., Self-synchronization in coupled salt-water oscillators, Physica D: Nonlinear Phenomena, 115, 3-4, 313-320, (1998) · Zbl 0962.76505 · doi:10.1016/S0167-2789(97)00240-6
[11] Kuroe, Y.; Hayashi, S., Analysis of bifurcation in power electronic induction motor drive systems, Proceedings of the 20th Annual IEEE Power Electronics Specialists Conference · doi:10.1109/PESC.1989.48578
[12] Hemati, N., Strange attractors in brushless DC motors, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41, 1, 40-45, (1994) · doi:10.1109/81.260218
[13] Li, Z.; Park, J. B.; Joo, Y. H.; Zhang, B.; Chen, G., Bifurcations and chaos in a permanent-magnet synchronous motor, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 3, 383-387, (2002) · doi:10.1109/81.989176
[14] He, R.; Han, Q., Dynamics and stability of permanent-magnet synchronous motor, Mathematical Problems in Engineering, 2017, (2017) · Zbl 1426.78027
[15] Tao, R.; Ma, J.; Zhao, H., Torque ripple minimization in PMSM based on an indirect adaptive ROBust controller, Mathematical Problems in Engineering, 2017, (2017) · Zbl 1426.93150
[16] Zribi, M.; Oteafy, A.; Smaoui, N., Controlling chaos in the permanent magnet synchronous motor, Chaos, Solitons & Fractals, 41, 3, 1266-1276, (2009) · doi:10.1016/j.chaos.2008.05.019
[17] Ataei, M.; Kiyoumarsi, A.; Ghorbani, B., Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement, Physics Letters A, 374, 41, 4226-4230, (2010) · Zbl 1238.34118 · doi:10.1016/j.physleta.2010.08.047
[18] Harb, A. M., Nonlinear chaos control in a permanent magnet reluctance machine, Chaos, Solitons & Fractals, 19, 5, 1217-1224, (2004) · Zbl 1072.78512 · doi:10.1016/S0960-0779(03)00311-4
[19] Choi, H. H., Adaptive control of a chaotic permanent magnet synchronous motor, Nonlinear Dynamics, 69, 3, 1311-1322, (2012) · Zbl 1253.93064 · doi:10.1007/s11071-012-0349-7
[20] Maeng, G.; Choi, H. H., Adaptive sliding mode control of a chaotic nonsmooth-air-gap permanent magnet synchronous motor with uncertainties, Nonlinear Dynamics, 74, 3, 571-580, (2013) · Zbl 1279.34075 · doi:10.1007/s11071-013-0989-2
[21] Loria, A., Robust linear control of (chaotic) permanent-magnet synchronous motors with uncertainties, IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 9, 2109-2122, (2009) · doi:10.1109/TCSI.2008.2011587
[22] Loria, A.; Espinosa-Pérez, G.; Avila-Becerril, S., Global adaptive linear control of the permanent-magnet synchronous motor, International Journal of Adaptive Control and Signal Processing, 28, 10, 971-986, (2014) · Zbl 1337.93046 · doi:10.1002/acs.2421
[23] Yu, Y.; Guo, X.; Mi, Z., Adaptive Robust Backstepping Control of Permanent Magnet Synchronous Motor Chaotic System with Fully Unknown Parameters and External Disturbances, Mathematical Problems in Engineering, 2016, (2016) · Zbl 1400.93153 · doi:10.1155/2016/3690240
[24] Wu, X.; Wang, H.; Yuan, X.; Huang, S.; Luo, D., Design and implementation of recursive model predictive control for permanent magnet synchronous motor drives, Mathematical Problems in Engineering, 2015, (2015) · doi:10.1155/2015/431734
[25] Zhang, Y.; Cheng, X.-F., Sensorless control of permanent magnet synchronous motors and EKF parameter tuning research, Mathematical Problems in Engineering, 2016, (2016) · doi:10.1155/2016/3916231
[26] Qian, J.; Xiong, A.; Ma, W., Extended state observer-based sliding mode control with new reaching law for PMSM speed control, Mathematical Problems in Engineering, 2016, (2016) · Zbl 1400.93106 · doi:10.1155/2016/6058981
[27] Du-Qu, W.; Bo, Z., Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory, Chinese Physics B, 18, 4, 1399-1403, (2009) · doi:10.1088/1674-1056/18/4/019
[28] Tang, C.-S.; Dai, Y.-H., Finite-time stability control of permanent magnet synchronous motor chaotic system with parameters uncertain, Wuli Xuebao/Acta Physica Sinica, 62, 18, (2013) · doi:10.7498/aps.62.180504
[29] Wang, J.; Chen, X.; Fu, J., Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters, Nonlinear Dynamics, 78, 2, 1321-1328, (2014) · Zbl 1331.93115 · doi:10.1007/s11071-014-1518-7
[30] Chen, Q.; Ren, X. M.; Na, J., Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors, ISA Transactions®, 58, 1, 262-269, (2015) · doi:10.1016/j.isatra.2015.07.005
[31] Sun, Y.; Wu, X.; Bai, L.; Wei, Z.; Sun, G., Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor, Neurocomputing, (2015) · doi:10.1016/j.neucom.2016.05.036
[32] Du, H.; Wen, G.; Cheng, Y.; He, Y.; Jia, R., Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots, IEEE Transactions on Neural Networks and Learning Systems, 28, 12, 2998-3006, (2017) · doi:10.1109/TNNLS.2016.2610140
[33] Du, H. B.; He, Y. G.; Cheng, Y. Y., Finite-time synchronization of a class of second order non-linear multi-agent systems using output feedback control, IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 6, 1778-1788, (2014) · doi:10.1109/tcsi.2013.2295012
[34] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 57, 8, 2106-2110, (2012) · Zbl 1369.93128 · doi:10.1109/TAC.2011.2179869
[35] Parsegov, S. E.; Polyakov, A. E.; Shcherbakov, P. S., Fixed-time consensus algorithm for multi-agent systems with integrator dynamics, Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, NecSys 2013 · doi:10.3182/20130925-2-DE-4044.00055
[36] Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica, 51, 332-340, (2015) · Zbl 1309.93135 · doi:10.1016/j.automatica.2014.10.082
[37] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766, (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[38] Khalil, H. K.; Grizzle, J. W., Nonlinear systems, (2002), Upper Saddle River: Prentice Hall · Zbl 1003.34002
[39] Sun, Y.; Leng, S.; Lai, Y.; Grebogi, C.; Lin, W., Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy, Physical Review Letters, 119, 19, (2017) · doi:10.1103/PhysRevLett.119.198301
[40] Erban, R.; Haškovec, J.; Sun, Y., A Cucker-Smale model with noise and delay, SIAM Journal on Applied Mathematics, 76, 4, 1535-1557, (2016) · Zbl 1345.60063 · doi:10.1137/15M1030467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.